Description: Rekognition's face comparison feature was shown by the ACLU to have misidentified members of congress, and particularly members of colors, as other people who have been arrested using a mugshot database built on publicly available arrest photos.
Entities
View all entitiesAlleged: Amazon developed and deployed an AI system, which harmed Rekognition users and arrested people.
CSETv1 Taxonomy Classifications
Taxonomy DetailsIncident Number
The number of the incident in the AI Incident Database.
114
Special Interest Intangible Harm
An assessment of whether a special interest intangible harm occurred. This assessment does not consider the context of the intangible harm, if an AI was involved, or if there is characterizable class or subgroup of harmed entities. It is also not assessing if an intangible harm occurred. It is only asking if a special interest intangible harm occurred.
yes
Notes (AI special interest intangible harm)
If for 5.5 you select unclear or leave it blank, please provide a brief description of why.
You can also add notes if you want to provide justification for a level.
The ACLU's test demonstrated Rekognition's disproportionate inaccuracy on the faces of people of color.
Date of Incident Year
The year in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the year, estimate. Otherwise, leave blank.
Enter in the format of YYYY
2018
Date of Incident Month
The month in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the month, estimate. Otherwise, leave blank.
Enter in the format of MM
07
Estimated Date