Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
発見する
投稿する
  • ようこそAIIDへ
  • インシデントを発見
  • 空間ビュー
  • テーブル表示
  • リスト表示
  • 組織
  • 分類法
  • インシデントレポートを投稿
  • 投稿ランキング
  • ブログ
  • AIニュースダイジェスト
  • リスクチェックリスト
  • おまかせ表示
  • サインアップ
閉じる
発見する
投稿する
  • ようこそAIIDへ
  • インシデントを発見
  • 空間ビュー
  • テーブル表示
  • リスト表示
  • 組織
  • 分類法
  • インシデントレポートを投稿
  • 投稿ランキング
  • ブログ
  • AIニュースダイジェスト
  • リスクチェックリスト
  • おまかせ表示
  • サインアップ
閉じる

インシデント 83: AI Spam Filters Allegedly Block Legitimate Emails Based on Biased Keyword Detection

概要: AlgorithmWatch tested spam filtering algorithms across Gmail, Yahoo, Outlook, GMX, and LaPoste. Their findings reportedly showed that Microsoft Outlook’s spam filter flagged emails based on specific keywords that led to racial and content-based biases blocking legitimate communications. Emails mentioning Nigeria or containing certain financial and sexual health terms were found to be disproportionately marked as spam.

ツール

新しいレポート新しいレポート新しいレスポンス新しいレスポンス発見する発見する履歴を表示履歴を表示

組織

すべての組織を表示
Alleged: Yahoo , LaPoste , GMX , Microsoft と Google developed an AI system deployed by Yahoo , Outlook , LaPoste , GMX と Gmail, which harmed Yahoo! Mail users , Microsoft Outlook users , LaPoste users , GMX users と Gmail Users.
関与が疑われるAIシステム: Yahoo! Mail's spam filter , SpamAssassin , Microsoft Outlook's spam filter , LaPoste Mail's spam filter , GMX Mail's spam filter と Gmail's spam filter

インシデントのステータス

インシデントID
83
レポート数
1
インシデント発生日
2020-10-22
エディタ
Khoa Lam, Sean McGregor, Daniel Atherton
Applied Taxonomies
CSETv0, CSETv1, GMF, MIT

CSETv1 分類法のクラス

分類法の詳細

Incident Number

The number of the incident in the AI Incident Database.
 

83

CSETv0 分類法のクラス

分類法の詳細

Problem Nature

Indicates which, if any, of the following types of AI failure describe the incident: "Specification," i.e. the system's behavior did not align with the true intentions of its designer, operator, etc; "Robustness," i.e. the system operated unsafely because of features or changes in its environment, or in the inputs the system received; "Assurance," i.e. the system could not be adequately monitored or controlled during operation.
 

Specification, Robustness

Physical System

Where relevant, indicates whether the AI system(s) was embedded into or tightly associated with specific types of hardware.
 

Software only

Level of Autonomy

The degree to which the AI system(s) functions independently from human intervention. "High" means there is no human involved in the system action execution; "Medium" means the system generates a decision and a human oversees the resulting action; "low" means the system generates decision-support output and a human makes a decision and executes an action.
 

Unclear/unknown

Nature of End User

"Expert" if users with special training or technical expertise were the ones meant to benefit from the AI system(s)’ operation; "Amateur" if the AI systems were primarily meant to benefit the general public or untrained users.
 

Amateur

Public Sector Deployment

"Yes" if the AI system(s) involved in the accident were being used by the public sector or for the administration of public goods (for example, public transportation). "No" if the system(s) were being used in the private sector or for commercial purposes (for example, a ride-sharing company), on the other.
 

No

Data Inputs

A brief description of the data that the AI system(s) used or were trained on.
 

inbound emails

MIT 分類法のクラス

Machine-Classified
分類法の詳細

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

1.1. Unfair discrimination and misrepresentation

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. Discrimination and Toxicity

Entity

Which, if any, entity is presented as the main cause of the risk
 

AI

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Unintentional

インシデントレポート

レポートタイムライン

+1
Spam filters are efficient and uncontroversial. Until you look at them.
Spam filters are efficient and uncontroversial. Until you look at them.

Spam filters are efficient and uncontroversial. Until you look at them.

algorithmwatch.org

Spam filters are efficient and uncontroversial. Until you look at them.
algorithmwatch.org · 2020

An experiment reveals that Microsoft Outlook marks messages as spam on the basis of a single word, such as “Nigeria”. Spam filters are largely unaudited and could discriminate unfairly.

In an experiment, AlgorithmWatch sent a few hundred em…

バリアント

「バリアント」は既存のAIインシデントと同じ原因要素を共有し、同様な被害を引き起こし、同じ知的システムを含んだインシデントです。バリアントは完全に独立したインシデントとしてインデックスするのではなく、データベースに最初に投稿された同様なインシデントの元にインシデントのバリエーションとして一覧します。インシデントデータベースの他の投稿タイプとは違い、バリアントではインシデントデータベース以外の根拠のレポートは要求されません。詳細についてはこの研究論文を参照してください

よく似たインシデント

テキスト類似度による

Did our AI mess up? Flag the unrelated incidents

Sexist and Racist Google Adsense Advertisements

Discrimination in Online Ad Delivery

Jan 2013 · 27 レポート
High-Toxicity Assessed on Text Involving Women and Minority Groups

Google’s comment-ranking system will be a hit with the alt-right

Feb 2017 · 9 レポート
Facebook’s Political Ad Detection Reportedly Showed High and Geographically Uneven Error Rates

An Audit of Facebook’s Political Ad Policy Enforcement

Jul 2020 · 5 レポート
前のインシデント次のインシデント

よく似たインシデント

テキスト類似度による

Did our AI mess up? Flag the unrelated incidents

Sexist and Racist Google Adsense Advertisements

Discrimination in Online Ad Delivery

Jan 2013 · 27 レポート
High-Toxicity Assessed on Text Involving Women and Minority Groups

Google’s comment-ranking system will be a hit with the alt-right

Feb 2017 · 9 レポート
Facebook’s Political Ad Detection Reportedly Showed High and Geographically Uneven Error Rates

An Audit of Facebook’s Political Ad Policy Enforcement

Jul 2020 · 5 レポート

リサーチ

  • “AIインシデント”の定義
  • “AIインシデントレスポンス”の定義
  • データベースのロードマップ
  • 関連研究
  • 全データベースのダウンロード

プロジェクトとコミュニティ

  • AIIDについて
  • コンタクトとフォロー
  • アプリと要約
  • エディタのためのガイド

インシデント

  • 全インシデントの一覧
  • フラグの立ったインシデント
  • 登録待ち一覧
  • クラスごとの表示
  • 分類法

2024 - AI Incident Database

  • 利用規約
  • プライバシーポリシー
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • 1420c8e