Description: Buenos Aires's facial recognition system mistakenly flagged innocent people as criminals, leading to wrongful stops and detentions. Judicial investigations indicate the technology may have been misused for unauthorized surveillance and data collection. Despite privacy risks, the system has been used widely without full disclosure of standards or safeguards,
Editor Notes: Reconstruction of the timeline of events: (1) 2019: Buenos Aires implements a facial recognition system aimed at enhancing public safety, capturing thousands of individuals. (2) After implementation in 2019: At least 140 individuals, including Guillermo Ibarrola, are erroneously flagged as criminals due to database errors, leading to police checks and detentions. (3) 2020: The facial recognition feature is deactivated as a precaution during the COVID-19 pandemic and remains off by judicial order. (4) December 2023: Journalists confirm that their biometric data was accessed, which in turn prompted further scrutiny by them. (5) February 5, 2024: The Pulitzer Center publishes a report on the issues surrounding Buenos Aires's facial recognition system.
Entités
Voir toutes les entitésAlleged: Government of Argentina developed an AI system deployed by Government of Argentina , Government of Buenos Aires et Argentinean Ministry of Security, which harmed Argentinean citizens , Buenos Aires residents et Guillermo Ibarrola.
Statistiques d'incidents
Risk Subdomain
A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
2.1. Compromise of privacy by obtaining, leaking or correctly inferring sensitive information
Risk Domain
The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
- Privacy & Security
Entity
Which, if any, entity is presented as the main cause of the risk
AI
Timing
The stage in the AI lifecycle at which the risk is presented as occurring
Post-deployment
Intent
Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
Unintentional
Rapports d'incidents
Chronologie du rapport
75 % de la superficie de la capitale argentine est sous surveillance vidéo, ce que le gouvernement affiche fièrement sur des panneaux d'affichage. Mais le système de reconnaissance faciale, qui fait partie de l'immense infrastructure de sur…
Variantes
Une "Variante" est un incident qui partage les mêmes facteurs de causalité, produit des dommages similaires et implique les mêmes systèmes intelligents qu'un incident d'IA connu. Plutôt que d'indexer les variantes comme des incidents entièrement distincts, nous listons les variations d'incidents sous le premier incident similaire soumis à la base de données. Contrairement aux autres types de soumission à la base de données des incidents, les variantes ne sont pas tenues d'avoir des rapports en preuve externes à la base de données des incidents. En savoir plus sur le document de recherche.
Incidents similaires
Did our AI mess up? Flag the unrelated incidents

Machine Bias - ProPublica
· 15 rapports

Policing the Future
· 17 rapports

Tempe police release report, audio, photo
· 25 rapports
Incidents similaires
Did our AI mess up? Flag the unrelated incidents

Machine Bias - ProPublica
· 15 rapports

Policing the Future
· 17 rapports

Tempe police release report, audio, photo
· 25 rapports