Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
Découvrir
Envoyer
  • Bienvenue sur AIID
  • Découvrir les incidents
  • Vue spatiale
  • Vue de tableau
  • Vue de liste
  • Entités
  • Taxonomies
  • Soumettre des rapports d'incident
  • Classement des reporters
  • Blog
  • Résumé de l’Actualité sur l’IA
  • Contrôle des risques
  • Incident au hasard
  • S'inscrire
Fermer
Découvrir
Envoyer
  • Bienvenue sur AIID
  • Découvrir les incidents
  • Vue spatiale
  • Vue de tableau
  • Vue de liste
  • Entités
  • Taxonomies
  • Soumettre des rapports d'incident
  • Classement des reporters
  • Blog
  • Résumé de l’Actualité sur l’IA
  • Contrôle des risques
  • Incident au hasard
  • S'inscrire
Fermer

Incident 142: Facebook’s Advertisement Moderation System Routinely Misidentified Adaptive Fashion Products as Medical Equipment and Blocked Their Sellers

Description: Facebook platforms' automated ad moderation system falsely classified adaptive fashion products as medical and health care products and services, resulting in regular bans and appeals faced by their retailers.

Outils

Nouveau rapportNouveau rapportNouvelle RéponseNouvelle RéponseDécouvrirDécouvrirVoir l'historiqueVoir l'historique

Entités

Voir toutes les entités
Présumé : Un système d'IA développé et mis en œuvre par Facebook et Instagram, a endommagé Facebook users of disabilities et adaptive fashion retailers.

Statistiques d'incidents

ID
142
Nombre de rapports
1
Date de l'incident
2021-02-11
Editeurs
Sean McGregor, Khoa Lam
Applied Taxonomies
CSETv1, GMF, MIT

Classifications de taxonomie CSETv1

Détails de la taxonomie

Incident Number

The number of the incident in the AI Incident Database.
 

142

Classifications de taxonomie MIT

Machine-Classified
Détails de la taxonomie

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

1.1. Unfair discrimination and misrepresentation

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. Discrimination and Toxicity

Entity

Which, if any, entity is presented as the main cause of the risk
 

AI

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Unintentional

Rapports d'incidents

Chronologie du rapport

+1
Pourquoi Facebook rejette-t-il ces publicités de mode ?
Pourquoi Facebook rejette-t-il ces publicités de mode ?

Pourquoi Facebook rejette-t-il ces publicités de mode ?

nytimes.com

Pourquoi Facebook rejette-t-il ces publicités de mode ?
nytimes.com · 2021
Traduit par IA

Plus tôt cette année, Mighty Well, une entreprise de vêtements adaptés qui fabrique des vêtements à la mode pour les personnes handicapées, a fait quelque chose que beaucoup de nouvelles marques font : elle a essayé de placer une publicité …

Variantes

Une "Variante" est un incident qui partage les mêmes facteurs de causalité, produit des dommages similaires et implique les mêmes systèmes intelligents qu'un incident d'IA connu. Plutôt que d'indexer les variantes comme des incidents entièrement distincts, nous listons les variations d'incidents sous le premier incident similaire soumis à la base de données. Contrairement aux autres types de soumission à la base de données des incidents, les variantes ne sont pas tenues d'avoir des rapports en preuve externes à la base de données des incidents. En savoir plus sur le document de recherche.

Incidents similaires

Par similarité textuelle

Did our AI mess up? Flag the unrelated incidents

Ever AI Reportedly Deceived Customers about FRT Use in App

Millions of people uploaded photos to the Ever app. Then the company used them to develop facial recognition tools.

Apr 2019 · 7 rapports
Facebook’s Hate Speech Detection Algorithms Allegedly Disproportionately Failed to Remove Racist Content towards Minority Groups

Facebook’s race-blind practices around hate speech came at the expense of Black users, new documents show

Nov 2021 · 2 rapports
Research Prototype AI, Delphi, Reportedly Gave Racially Biased Answers on Ethics

Scientists Built an AI to Give Ethical Advice, But It Turned Out Super Racist

Oct 2021 · 3 rapports
Incident précédentProchain incident

Incidents similaires

Par similarité textuelle

Did our AI mess up? Flag the unrelated incidents

Ever AI Reportedly Deceived Customers about FRT Use in App

Millions of people uploaded photos to the Ever app. Then the company used them to develop facial recognition tools.

Apr 2019 · 7 rapports
Facebook’s Hate Speech Detection Algorithms Allegedly Disproportionately Failed to Remove Racist Content towards Minority Groups

Facebook’s race-blind practices around hate speech came at the expense of Black users, new documents show

Nov 2021 · 2 rapports
Research Prototype AI, Delphi, Reportedly Gave Racially Biased Answers on Ethics

Scientists Built an AI to Give Ethical Advice, But It Turned Out Super Racist

Oct 2021 · 3 rapports

Recherche

  • Définition d'un « incident d'IA »
  • Définir une « réponse aux incidents d'IA »
  • Feuille de route de la base de données
  • Travaux connexes
  • Télécharger la base de données complète

Projet et communauté

  • À propos de
  • Contacter et suivre
  • Applications et résumés
  • Guide de l'éditeur

Incidents

  • Tous les incidents sous forme de liste
  • Incidents signalés
  • File d'attente de soumission
  • Affichage des classifications
  • Taxonomies

2024 - AI Incident Database

  • Conditions d'utilisation
  • Politique de confidentialité
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • ecd56df