Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar

Incidente 709: Unrepresented Litigant Misled by ChatGPT-Generated False Legal Citations in Manchester Court

Descripción: A litigant in person (LiP) in a Manchester civil case presented false legal citations generated by ChatGPT. It fabricated one case name and provided fictitious excerpts for three real cases, misleadingly supporting the LiP's argument. The judge, upon investigation, found the submissions to be inadvertent and did not penalize the LiP.

Herramientas

Nuevo InformeNuevo InformeNueva RespuestaNueva RespuestaDescubrirDescubrirVer HistorialVer Historial

Entidades

Ver todas las entidades
Alleged: OpenAI developed an AI system deployed by Unnamed Manchester litigant, which harmed Unnamed Manchester litigant , Manchester court system y General public.

Estadísticas de incidentes

ID
709
Cantidad de informes
1
Fecha del Incidente
2023-05-28
Editores
Daniel Atherton
Applied Taxonomies
MIT

Clasificaciones de la Taxonomía MIT

Machine-Classified
Detalles de la Taxonomía

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

3.1. False or misleading information

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. Misinformation

Entity

Which, if any, entity is presented as the main cause of the risk
 

AI

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Unintentional

Informes del Incidente

Cronología de Informes

+1
LiP presents false citations to court after asking ChatGPT
LiP presents false citations to court after asking ChatGPT

LiP presents false citations to court after asking ChatGPT

lawgazette.co.uk

LiP presents false citations to court after asking ChatGPT
lawgazette.co.uk · 2023

A litigant in person tried to present fictitious submissions in court based on answers provided by the ChatGPT chatbot, the Gazette has learned. 

The civil case, heard in Manchester, involved one represented party and one unrepresented: pro…

Variantes

Una "Variante" es un incidente que comparte los mismos factores causales, produce daños similares e involucra los mismos sistemas inteligentes que un incidente de IA conocido. En lugar de indexar las variantes como incidentes completamente separados, enumeramos las variaciones de los incidentes bajo el primer incidente similar enviado a la base de datos. A diferencia de otros tipos de envío a la base de datos de incidentes, no se requiere que las variantes tengan informes como evidencia externa a la base de datos de incidentes. Obtenga más información del trabajo de investigación.

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Defamation via AutoComplete

Algorithmic Defamation: The Case of the Shameless Autocomplete

Apr 2011 · 28 informes
Tinder's Personalized Pricing Algorithm Found to Offer Higher Prices for Older Users

A Consumer Investigation into Personalised Pricing

Mar 2015 · 4 informes
Three Make-Up Artists Lost Jobs Following Black-Box Automated Decision by HireVue

Payout for Estée Lauder women ‘sacked by algorithm’

Mar 2022 · 2 informes
Incidente AnteriorSiguiente Incidente

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Defamation via AutoComplete

Algorithmic Defamation: The Case of the Shameless Autocomplete

Apr 2011 · 28 informes
Tinder's Personalized Pricing Algorithm Found to Offer Higher Prices for Older Users

A Consumer Investigation into Personalised Pricing

Mar 2015 · 4 informes
Three Make-Up Artists Lost Jobs Following Black-Box Automated Decision by HireVue

Payout for Estée Lauder women ‘sacked by algorithm’

Mar 2022 · 2 informes

Investigación

  • Definición de un “Incidente de IA”
  • Definición de una “Respuesta a incidentes de IA”
  • Hoja de ruta de la base de datos
  • Trabajo relacionado
  • Descargar Base de Datos Completa

Proyecto y Comunidad

  • Acerca de
  • Contactar y Seguir
  • Aplicaciones y resúmenes
  • Guía del editor

Incidencias

  • Todos los incidentes en forma de lista
  • Incidentes marcados
  • Cola de envío
  • Vista de clasificaciones
  • Taxonomías

2024 - AI Incident Database

  • Condiciones de uso
  • Política de privacidad
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • ecd56df