Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
発見する
投稿する
  • ようこそAIIDへ
  • インシデントを発見
  • 空間ビュー
  • テーブル表示
  • リスト表示
  • 組織
  • 分類法
  • インシデントレポートを投稿
  • 投稿ランキング
  • ブログ
  • AIニュースダイジェスト
  • リスクチェックリスト
  • おまかせ表示
  • サインアップ
閉じる
発見する
投稿する
  • ようこそAIIDへ
  • インシデントを発見
  • 空間ビュー
  • テーブル表示
  • リスト表示
  • 組織
  • 分類法
  • インシデントレポートを投稿
  • 投稿ランキング
  • ブログ
  • AIニュースダイジェスト
  • リスクチェックリスト
  • おまかせ表示
  • サインアップ
閉じる

インシデント 345: Auto-Insurance Photo-Based Estimation Allegedly Gave Inaccurate Repair Prices Frequently

概要: Auto-insurance companies' photo-based estimation of repair price was alleged by repair shop owners and industry groups as providing inaccurate estimates, causing damaged cars to stay in the shop longer.

ツール

新しいレポート新しいレポート新しいレスポンス新しいレスポンス発見する発見する履歴を表示履歴を表示

組織

すべての組織を表示
Alleged: CCC Information Services と Tractable developed an AI system deployed by insurance companies, which harmed vehicle repair shops と vehicle owners.

インシデントのステータス

インシデントID
345
レポート数
1
インシデント発生日
2021-04-13
エディタ
Khoa Lam
Applied Taxonomies
MIT

MIT 分類法のクラス

Machine-Classified
分類法の詳細

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

7.3. Lack of capability or robustness

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. AI system safety, failures, and limitations

Entity

Which, if any, entity is presented as the main cause of the risk
 

AI

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Unintentional

インシデントレポート

レポートタイムライン

AI Comes to Car Repair, and Body Shop Owners Aren’t HappyIncident Occurrence
AI Comes to Car Repair, and Body Shop Owners Aren’t Happy

AI Comes to Car Repair, and Body Shop Owners Aren’t Happy

wired.com

AI Comes to Car Repair, and Body Shop Owners Aren’t Happy
wired.com · 2021

In the before times, Jerry McNee wasn’t always a fan of appraisers. McNee is the president of Ultimate Collision Repair, an auto repair shop in Edison, New Jersey. From his perspective, appraisers and claims adjusters, paid by insurance com…

バリアント

「バリアント」は既存のAIインシデントと同じ原因要素を共有し、同様な被害を引き起こし、同じ知的システムを含んだインシデントです。バリアントは完全に独立したインシデントとしてインデックスするのではなく、データベースに最初に投稿された同様なインシデントの元にインシデントのバリエーションとして一覧します。インシデントデータベースの他の投稿タイプとは違い、バリアントではインシデントデータベース以外の根拠のレポートは要求されません。詳細についてはこの研究論文を参照してください

よく似たインシデント

テキスト類似度による

Did our AI mess up? Flag the unrelated incidents

Wikipedia Vandalism Prevention Bot Loop

Danger, danger! 10 alarming examples of AI gone wild

Feb 2017 · 6 レポート
Kronos Scheduling Algorithm Allegedly Caused Financial Issues for Starbucks Employees

Working Anything but 9 to 5

Aug 2014 · 10 レポート
Predictive Policing Biases of PredPol

Policing the Future

Nov 2015 · 17 レポート
前のインシデント次のインシデント

よく似たインシデント

テキスト類似度による

Did our AI mess up? Flag the unrelated incidents

Wikipedia Vandalism Prevention Bot Loop

Danger, danger! 10 alarming examples of AI gone wild

Feb 2017 · 6 レポート
Kronos Scheduling Algorithm Allegedly Caused Financial Issues for Starbucks Employees

Working Anything but 9 to 5

Aug 2014 · 10 レポート
Predictive Policing Biases of PredPol

Policing the Future

Nov 2015 · 17 レポート

リサーチ

  • “AIインシデント”の定義
  • “AIインシデントレスポンス”の定義
  • データベースのロードマップ
  • 関連研究
  • 全データベースのダウンロード

プロジェクトとコミュニティ

  • AIIDについて
  • コンタクトとフォロー
  • アプリと要約
  • エディタのためのガイド

インシデント

  • 全インシデントの一覧
  • フラグの立ったインシデント
  • 登録待ち一覧
  • クラスごとの表示
  • 分類法

2024 - AI Incident Database

  • 利用規約
  • プライバシーポリシー
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • ecd56df