Description: AI deepfake detection tools are reportedly failing voters in the Global South due to biases in their training data. These tools, which prioritize English language and Western faces, show reduced accuracy when detecting manipulated content from non-Western regions. As a result of this detection gap, election integrity faces threats from and the amplification of misinformation, which leaves journalists and researchers with inadequate resources to combat the issue.
Entités
Voir toutes les entitésAlleged: Unknown deepfake detection technology developers , True Media et Reality Defender developed and deployed an AI system, which harmed Global South Citizens , Political researchers , Global South local fact-checkers , Non-native English speakers , Global South journalists et Civil society organizations in developing countries.
Statistiques d'incidents
Risk Subdomain
A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
3.1. False or misleading information
Risk Domain
The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
- Misinformation
Entity
Which, if any, entity is presented as the main cause of the risk
Human
Timing
The stage in the AI lifecycle at which the risk is presented as occurring
Post-deployment
Intent
Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
Intentional
Rapports d'incidents
Chronologie du rapport
Récemment, l'ancien président et condamné pour crime Donald Trump a publié une série de photos qui semblaient montrer des fans de la pop star Taylor Swift soutenant sa candidature à la présidence des États-Unis. Les images semblaient généré…
Variantes
Une "Variante" est un incident qui partage les mêmes facteurs de causalité, produit des dommages similaires et implique les mêmes systèmes intelligents qu'un incident d'IA connu. Plutôt que d'indexer les variantes comme des incidents entièrement distincts, nous listons les variations d'incidents sous le premier incident similaire soumis à la base de données. Contrairement aux autres types de soumission à la base de données des incidents, les variantes ne sont pas tenues d'avoir des rapports en preuve externes à la base de données des incidents. En savoir plus sur le document de recherche.