Description: A study by Indiana University researchers uncovered widespread misuse of large language models (LLMs) for cybercrime. Cybercriminals, according to that study, use LLMs like OpenAI's GPT-3.5 and GPT-4 to create malware, phishing scams, and scam websites. These models are available on underground markets, often bypassing safety checks through jailbreaking. Named malicious LLMs are BadGPT, XXXGPT, Evil-GPT, WormGPT, FraudGPT, BLACKHATGPT, EscapeGPT, DarkGPT, and WolfGPT.
Entités
Voir toutes les entitésAlleged: OpenAI developed an AI system deployed by Cybercriminals , BadGPT , XXXGPT , Evil-GPT , WormGPT , FraudGPT , BLACKHATGPT , EscapeGPT , DarkGPT et WolfGPT, which harmed internet users , Organizations et Individuals targeted by malware.
Statistiques d'incidents
Risk Subdomain
A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
4.3. Fraud, scams, and targeted manipulation
Risk Domain
The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
- Malicious Actors & Misuse
Entity
Which, if any, entity is presented as the main cause of the risk
Human
Timing
The stage in the AI lifecycle at which the risk is presented as occurring
Post-deployment
Intent
Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
Intentional
Rapports d'incidents
Chronologie du rapport

Despite the hype around them, readers of Tech Policy Press are well aware that the advance of large language models (LLMs) and their various applications-- ranging from chatbots and coding assistants to recommendation systems-- has raised v…
The internet, a vast and indispensable resource for modern society, has a darker side where malicious activities thrive.
From identity theft to sophisticated malware attacks, cyber criminals keep coming up with new scam methods.
Widely avai…
Variantes
Une "Variante" est un incident qui partage les mêmes facteurs de causalité, produit des dommages similaires et implique les mêmes systèmes intelligents qu'un incident d'IA connu. Plutôt que d'indexer les variantes comme des incidents entièrement distincts, nous listons les variations d'incidents sous le premier incident similaire soumis à la base de données. Contrairement aux autres types de soumission à la base de données des incidents, les variantes ne sont pas tenues d'avoir des rapports en preuve externes à la base de données des incidents. En savoir plus sur le document de recherche.
Incidents similaires
Did our AI mess up? Flag the unrelated incidents
Incidents similaires
Did our AI mess up? Flag the unrelated incidents