Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
Découvrir
Envoyer
  • Bienvenue sur AIID
  • Découvrir les incidents
  • Vue spatiale
  • Vue de tableau
  • Vue de liste
  • Entités
  • Taxonomies
  • Soumettre des rapports d'incident
  • Classement des reporters
  • Blog
  • Résumé de l’Actualité sur l’IA
  • Contrôle des risques
  • Incident au hasard
  • S'inscrire
Fermer
Découvrir
Envoyer
  • Bienvenue sur AIID
  • Découvrir les incidents
  • Vue spatiale
  • Vue de tableau
  • Vue de liste
  • Entités
  • Taxonomies
  • Soumettre des rapports d'incident
  • Classement des reporters
  • Blog
  • Résumé de l’Actualité sur l’IA
  • Contrôle des risques
  • Incident au hasard
  • S'inscrire
Fermer

Incident 44: Machine Personal Assistants Failed to Maintain Social Norms

Description: During an experiment of software personal assistants at the Information Sciences Institute (ISI) at the University of Southern California (USC), researchers found that the assistants violated the privacy of their principals and were unable to respect the social norms of the office.

Outils

Nouveau rapportNouveau rapportNouvelle RéponseNouvelle RéponseDécouvrirDécouvrirVoir l'historiqueVoir l'historique

Entités

Voir toutes les entités
Présumé : Un système d'IA développé et mis en œuvre par USC Information Sciences Institute, a endommagé USC Information Sciences Institute.

Statistiques d'incidents

ID
44
Nombre de rapports
1
Date de l'incident
2008-07-01
Editeurs
Sean McGregor
Applied Taxonomies
CSETv0, CSETv1, GMF, MIT

Classifications de taxonomie CSETv0

Détails de la taxonomie

Problem Nature

Indicates which, if any, of the following types of AI failure describe the incident: "Specification," i.e. the system's behavior did not align with the true intentions of its designer, operator, etc; "Robustness," i.e. the system operated unsafely because of features or changes in its environment, or in the inputs the system received; "Assurance," i.e. the system could not be adequately monitored or controlled during operation.
 

Specification

Physical System

Where relevant, indicates whether the AI system(s) was embedded into or tightly associated with specific types of hardware.
 

Software only

Level of Autonomy

The degree to which the AI system(s) functions independently from human intervention. "High" means there is no human involved in the system action execution; "Medium" means the system generates a decision and a human oversees the resulting action; "low" means the system generates decision-support output and a human makes a decision and executes an action.
 

Medium

Nature of End User

"Expert" if users with special training or technical expertise were the ones meant to benefit from the AI system(s)’ operation; "Amateur" if the AI systems were primarily meant to benefit the general public or untrained users.
 

Expert

Public Sector Deployment

"Yes" if the AI system(s) involved in the accident were being used by the public sector or for the administration of public goods (for example, public transportation). "No" if the system(s) were being used in the private sector or for commercial purposes (for example, a ride-sharing company), on the other.
 

No

Data Inputs

A brief description of the data that the AI system(s) used or were trained on.
 

Schedule data, cellphone GPS data

Classifications de taxonomie CSETv1

Détails de la taxonomie

Incident Number

The number of the incident in the AI Incident Database.
 

44

Special Interest Intangible Harm

An assessment of whether a special interest intangible harm occurred. This assessment does not consider the context of the intangible harm, if an AI was involved, or if there is characterizable class or subgroup of harmed entities. It is also not assessing if an intangible harm occurred. It is only asking if a special interest intangible harm occurred.
 

no

Date of Incident Year

The year in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the year, estimate. Otherwise, leave blank. Enter in the format of YYYY
 

2000

Date of Incident Month

The month in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the month, estimate. Otherwise, leave blank. Enter in the format of MM
 

06

Estimated Date

“Yes” if the data was estimated. “No” otherwise.
 

No

Multiple AI Interaction

“Yes” if two or more independently operating AI systems were involved. “No” otherwise.
 

yes

Classifications de taxonomie MIT

Machine-Classified
Détails de la taxonomie

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

5.1. Overreliance and unsafe use

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. Human-Computer Interaction

Entity

Which, if any, entity is presented as the main cause of the risk
 

AI

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Unintentional

Rapports d'incidents

Chronologie du rapport

+1
Elfes électriques : qu'est-ce qui s'est passé et pourquoi ?
Elfes électriques : qu'est-ce qui s'est passé et pourquoi ?

Elfes électriques : qu'est-ce qui s'est passé et pourquoi ?

aaai.org

Elfes électriques : qu'est-ce qui s'est passé et pourquoi ?
aaai.org · 2008
Traduit par IA

Résumé : Les assistants personnels logiciels continuent d'être un sujet d'intérêt de recherche important. Cet article décrit certaines des leçons importantes tirées d'une équipe déployée avec succès d'agents assistants personnels (Electric …

Variantes

Une "Variante" est un incident qui partage les mêmes facteurs de causalité, produit des dommages similaires et implique les mêmes systèmes intelligents qu'un incident d'IA connu. Plutôt que d'indexer les variantes comme des incidents entièrement distincts, nous listons les variations d'incidents sous le premier incident similaire soumis à la base de données. Contrairement aux autres types de soumission à la base de données des incidents, les variantes ne sont pas tenues d'avoir des rapports en preuve externes à la base de données des incidents. En savoir plus sur le document de recherche.

Incidents similaires

Par similarité textuelle

Did our AI mess up? Flag the unrelated incidents

Algorithm Assessing Risk Faced by Victims of Gender Violence Misclassified Low-Risk Cases, Allegedly Leading to Homicide of Women and Children in Spain

In Spain, the VioGén algorithm attempts to forecast gender violence

Jul 2007 · 7 rapports
Collection of Robotic Surgery Malfunctions

Adverse Events in Robotic Surgery: A Retrospective Study of 14 Years of FDA Data

Jul 2015 · 12 rapports
Personal voice assistants struggle with black voices, new study shows

Personal voice assistants struggle with black voices, new study shows

Mar 2020 · 2 rapports
Incident précédentProchain incident

Incidents similaires

Par similarité textuelle

Did our AI mess up? Flag the unrelated incidents

Algorithm Assessing Risk Faced by Victims of Gender Violence Misclassified Low-Risk Cases, Allegedly Leading to Homicide of Women and Children in Spain

In Spain, the VioGén algorithm attempts to forecast gender violence

Jul 2007 · 7 rapports
Collection of Robotic Surgery Malfunctions

Adverse Events in Robotic Surgery: A Retrospective Study of 14 Years of FDA Data

Jul 2015 · 12 rapports
Personal voice assistants struggle with black voices, new study shows

Personal voice assistants struggle with black voices, new study shows

Mar 2020 · 2 rapports

Recherche

  • Définition d'un « incident d'IA »
  • Définir une « réponse aux incidents d'IA »
  • Feuille de route de la base de données
  • Travaux connexes
  • Télécharger la base de données complète

Projet et communauté

  • À propos de
  • Contacter et suivre
  • Applications et résumés
  • Guide de l'éditeur

Incidents

  • Tous les incidents sous forme de liste
  • Incidents signalés
  • File d'attente de soumission
  • Affichage des classifications
  • Taxonomies

2024 - AI Incident Database

  • Conditions d'utilisation
  • Politique de confidentialité
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • ecd56df