Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar

Incidente 808: Infinite Campus AI-Driven Student Risk Model Leads to Cuts in Support for Nevada's Low-Income Schools

Descripción: An AI system developed by Infinite Campus and deployed by Nevada to identify at-risk students led to a sharp reduction in the number classified as needing support, dropping from 270,000 to 65,000. The reclassification caused significant budget cuts in schools serving low-income populations. The drastic reduction in identified at-risk students reportedly left thousands of vulnerable children without resources and support.
Editor Notes: Timeline notes and clarification: Before 2023, Nevada identified at-risk students mostly by income, using free or reduced-price lunch eligibility as the key measure. In 2022, this system classified over 270,000 students as at-risk. Looking to improve the process, Nevada partnered with Infinite Campus in 2023 to introduce an AI system that used more factors like GPA, attendance, household structure, and home language. The new system was meant to better predict which students might struggle in school. However, during the 2023-2024 school year, the AI cut the number of at-risk students to less than 65,000. This reclassification caused budget cuts in schools that depended on the funding tied to at-risk students, especially those serving low-income populations. By October 2024, the problem gained national attention.

Herramientas

Nuevo InformeNuevo InformeNueva RespuestaNueva RespuestaDescubrirDescubrirVer HistorialVer Historial

Entidades

Ver todas las entidades
Alleged: Infinite Campus developed an AI system deployed by Nevada Department of Education, which harmed Low-income students in Nevada , Nevada school districts , Mater Academy of Nevada y Somerset Academy.

Estadísticas de incidentes

ID
808
Cantidad de informes
1
Fecha del Incidente
2024-10-11
Editores
Daniel Atherton
Applied Taxonomies
MIT

Clasificaciones de la Taxonomía MIT

Machine-Classified
Detalles de la Taxonomía

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

1.3. Unequal performance across groups

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. Discrimination and Toxicity

Entity

Which, if any, entity is presented as the main cause of the risk
 

AI

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Unintentional

Informes del Incidente

Cronología de Informes

+1
Nevada le preguntó a A.I. qué estudiantes necesitan ayuda. La respuesta provocó indignación.
Nevada le preguntó a A.I. qué estudiantes necesitan ayuda. La respuesta provocó indignación.

Nevada le preguntó a A.I. qué estudiantes necesitan ayuda. La respuesta provocó indignación.

nytimes.com

Nevada le preguntó a A.I. qué estudiantes necesitan ayuda. La respuesta provocó indignación.
nytimes.com · 2024
Traducido por IA

Nevada ha tenido durante mucho tiempo la financiación escolar más desequilibrada del país. Los distritos de bajos ingresos tienen casi un 35 por ciento menos de dinero para gastar por alumno que los más ricos, la brecha más grande de cualqu…

Variantes

Una "Variante" es un incidente que comparte los mismos factores causales, produce daños similares e involucra los mismos sistemas inteligentes que un incidente de IA conocido. En lugar de indexar las variantes como incidentes completamente separados, enumeramos las variaciones de los incidentes bajo el primer incidente similar enviado a la base de datos. A diferencia de otros tipos de envío a la base de datos de incidentes, no se requiere que las variantes tengan informes como evidencia externa a la base de datos de incidentes. Obtenga más información del trabajo de investigación.

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Northpointe Risk Models

Machine Bias - ProPublica

May 2016 · 15 informes
NY City School Teacher Evaluation Algorithm Contested

Analyzing Released NYC Value-Added Data Part 2

Feb 2012 · 7 informes
Predictive Policing Biases of PredPol

Policing the Future

Nov 2015 · 17 informes
Incidente AnteriorSiguiente Incidente

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Northpointe Risk Models

Machine Bias - ProPublica

May 2016 · 15 informes
NY City School Teacher Evaluation Algorithm Contested

Analyzing Released NYC Value-Added Data Part 2

Feb 2012 · 7 informes
Predictive Policing Biases of PredPol

Policing the Future

Nov 2015 · 17 informes

Investigación

  • Definición de un “Incidente de IA”
  • Definición de una “Respuesta a incidentes de IA”
  • Hoja de ruta de la base de datos
  • Trabajo relacionado
  • Descargar Base de Datos Completa

Proyecto y Comunidad

  • Acerca de
  • Contactar y Seguir
  • Aplicaciones y resúmenes
  • Guía del editor

Incidencias

  • Todos los incidentes en forma de lista
  • Incidentes marcados
  • Cola de envío
  • Vista de clasificaciones
  • Taxonomías

2024 - AI Incident Database

  • Condiciones de uso
  • Política de privacidad
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • ecd56df