Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar

Incidente 773: Chatbot in Workplace Training at Bunbury Prison Reveals Real Names in Sexual Harassment Case

Descripción: During workplace training at Bunbury Prison in Western Australia, a trainer used Microsoft's Copilot AI chatbot to generate case study scenarios. The chatbot produced a scenario that included the real name of a former employee involved in a sexual harassment case, revealing sensitive information.

Herramientas

Nuevo InformeNuevo InformeNueva RespuestaNueva RespuestaDescubrirDescubrirVer HistorialVer Historial

Entidades

Ver todas las entidades
Alleged: Microsoft developed an AI system deployed by Charlotte Ingham y Western Australia Department of Justice, which harmed Western Australia Department of Justice , Bronwyn Hendry y Western Australia Department of Justice senior staff members.

Estadísticas de incidentes

ID
773
Cantidad de informes
1
Fecha del Incidente
2024-08-20
Editores
Daniel Atherton
Applied Taxonomies
MIT

Clasificaciones de la Taxonomía MIT

Machine-Classified
Detalles de la Taxonomía

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

2.1. Compromise of privacy by obtaining, leaking or correctly inferring sensitive information

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. Privacy & Security

Entity

Which, if any, entity is presented as the main cause of the risk
 

AI

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Unintentional

Informes del Incidente

Cronología de Informes

Incident OccurrenceAI chatbot blamed for psychosocial workplace training gaffe at Bunbury prison
AI chatbot blamed for psychosocial workplace training gaffe at Bunbury prison

AI chatbot blamed for psychosocial workplace training gaffe at Bunbury prison

abc.net.au

AI chatbot blamed for psychosocial workplace training gaffe at Bunbury prison
abc.net.au · 2024

The psychosocial safety training company that used the full name of an alleged sexual harassment victim in a course at her former workplace says artificial intelligence (AI) is to blame.

Psychosocial Leadership trainer Charlotte Ingham said…

Variantes

Una "Variante" es un incidente que comparte los mismos factores causales, produce daños similares e involucra los mismos sistemas inteligentes que un incidente de IA conocido. En lugar de indexar las variantes como incidentes completamente separados, enumeramos las variaciones de los incidentes bajo el primer incidente similar enviado a la base de datos. A diferencia de otros tipos de envío a la base de datos de incidentes, no se requiere que las variantes tengan informes como evidencia externa a la base de datos de incidentes. Obtenga más información del trabajo de investigación.

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Australian Automated Debt Assessment System Issued False Notices to Thousands

Centrelink's debt recovery system lacks transparency and treated some customers unfairly, ombudsman finds

Jul 2015 · 39 informes
Airbnb's Trustworthiness Algorithm Allegedly Banned Users without Explanation, and Discriminated against Sex Workers

Is Airbnb using an algorithm to ban users from the platform?

Jul 2017 · 6 informes
Defamation via AutoComplete

Algorithmic Defamation: The Case of the Shameless Autocomplete

Apr 2011 · 28 informes
Incidente AnteriorSiguiente Incidente

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Australian Automated Debt Assessment System Issued False Notices to Thousands

Centrelink's debt recovery system lacks transparency and treated some customers unfairly, ombudsman finds

Jul 2015 · 39 informes
Airbnb's Trustworthiness Algorithm Allegedly Banned Users without Explanation, and Discriminated against Sex Workers

Is Airbnb using an algorithm to ban users from the platform?

Jul 2017 · 6 informes
Defamation via AutoComplete

Algorithmic Defamation: The Case of the Shameless Autocomplete

Apr 2011 · 28 informes

Investigación

  • Definición de un “Incidente de IA”
  • Definición de una “Respuesta a incidentes de IA”
  • Hoja de ruta de la base de datos
  • Trabajo relacionado
  • Descargar Base de Datos Completa

Proyecto y Comunidad

  • Acerca de
  • Contactar y Seguir
  • Aplicaciones y resúmenes
  • Guía del editor

Incidencias

  • Todos los incidentes en forma de lista
  • Incidentes marcados
  • Cola de envío
  • Vista de clasificaciones
  • Taxonomías

2024 - AI Incident Database

  • Condiciones de uso
  • Política de privacidad
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • ecd56df