Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar

Incidente 64: Customer Service Robot Scares Away Customers

Descripción: Heriot-Watt Univeristy in Scotland developed an artificially intelligent grocery store robot, Fabio, who provided unhelpful answers to customer's questions and "scared away" multiple customers, according to the grocery store Margiotta.

Herramientas

Nuevo InformeNuevo InformeNueva RespuestaNueva RespuestaDescubrirDescubrirVer HistorialVer Historial

Entidades

Ver todas las entidades
Alleged: Heriot-Watt University developed an AI system deployed by Heriot-Watt University y Margiotta, which harmed Store Patrons.

Estadísticas de incidentes

ID
64
Cantidad de informes
1
Fecha del Incidente
2018-01-22
Editores
Sean McGregor
Applied Taxonomies
CSETv0, CSETv1, GMF, MIT

Clasificaciones de la Taxonomía CSETv0

Detalles de la Taxonomía

Problem Nature

Indicates which, if any, of the following types of AI failure describe the incident: "Specification," i.e. the system's behavior did not align with the true intentions of its designer, operator, etc; "Robustness," i.e. the system operated unsafely because of features or changes in its environment, or in the inputs the system received; "Assurance," i.e. the system could not be adequately monitored or controlled during operation.
 

Specification, Assurance

Physical System

Where relevant, indicates whether the AI system(s) was embedded into or tightly associated with specific types of hardware.
 

Vehicle/mobile robot, Software only

Level of Autonomy

The degree to which the AI system(s) functions independently from human intervention. "High" means there is no human involved in the system action execution; "Medium" means the system generates a decision and a human oversees the resulting action; "low" means the system generates decision-support output and a human makes a decision and executes an action.
 

Medium

Nature of End User

"Expert" if users with special training or technical expertise were the ones meant to benefit from the AI system(s)’ operation; "Amateur" if the AI systems were primarily meant to benefit the general public or untrained users.
 

Expert

Public Sector Deployment

"Yes" if the AI system(s) involved in the accident were being used by the public sector or for the administration of public goods (for example, public transportation). "No" if the system(s) were being used in the private sector or for commercial purposes (for example, a ride-sharing company), on the other.
 

No

Data Inputs

A brief description of the data that the AI system(s) used or were trained on.
 

Customer requests

Clasificaciones de la Taxonomía CSETv1

Detalles de la Taxonomía

Incident Number

The number of the incident in the AI Incident Database.
 

64

Special Interest Intangible Harm

An assessment of whether a special interest intangible harm occurred. This assessment does not consider the context of the intangible harm, if an AI was involved, or if there is characterizable class or subgroup of harmed entities. It is also not assessing if an intangible harm occurred. It is only asking if a special interest intangible harm occurred.
 

no

Date of Incident Year

The year in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the year, estimate. Otherwise, leave blank. Enter in the format of YYYY
 

2018

Estimated Date

“Yes” if the data was estimated. “No” otherwise.
 

Yes

Multiple AI Interaction

“Yes” if two or more independently operating AI systems were involved. “No” otherwise.
 

no

Embedded

“Yes” if the AI is embedded in a physical system. “No” if it is not. “Maybe” if it is unclear.
 

yes

Clasificaciones de la Taxonomía MIT

Machine-Classified
Detalles de la Taxonomía

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

7.3. Lack of capability or robustness

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. AI system safety, failures, and limitations

Entity

Which, if any, entity is presented as the main cause of the risk
 

AI

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Unintentional

Informes del Incidente

Cronología de Informes

+1
La tienda contrata a un robot para ayudar a los clientes, el robot es despedido por asustar a los clientes
La tienda contrata a un robot para ayudar a los clientes, el robot es despedido por asustar a los clientes

La tienda contrata a un robot para ayudar a los clientes, el robot es despedido por asustar a los clientes

iflscience.com

La tienda contrata a un robot para ayudar a los clientes, el robot es despedido por asustar a los clientes
iflscience.com · 2018
Traducido por IA

Cada pocos meses hay una historia que nos advierte que los robots se harán cargo de nuestros trabajos dentro de cinco, 10 o 20 años. No se escuchan muchas historias sobre robots que se hacen cargo de los trabajos aquí y ahora. Entonces, ¿qu…

Variantes

Una "Variante" es un incidente que comparte los mismos factores causales, produce daños similares e involucra los mismos sistemas inteligentes que un incidente de IA conocido. En lugar de indexar las variantes como incidentes completamente separados, enumeramos las variaciones de los incidentes bajo el primer incidente similar enviado a la base de datos. A diferencia de otros tipos de envío a la base de datos de incidentes, no se requiere que las variantes tengan informes como evidencia externa a la base de datos de incidentes. Obtenga más información del trabajo de investigación.

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Employee Automatically Terminated by Computer Program

The man who was fired by a machine

Oct 2014 · 20 informes
Amazon Alexa Plays Loud Music when Owner is Away

Top 5 AI Failures From 2017 Which Prove That ‘Perfect AI’ Is Still A Dream

Nov 2017 · 4 informes
Female Applicants Down-Ranked by Amazon Recruiting Tool

2018 in Review: 10 AI Failures

Aug 2016 · 33 informes
Incidente AnteriorSiguiente Incidente

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Employee Automatically Terminated by Computer Program

The man who was fired by a machine

Oct 2014 · 20 informes
Amazon Alexa Plays Loud Music when Owner is Away

Top 5 AI Failures From 2017 Which Prove That ‘Perfect AI’ Is Still A Dream

Nov 2017 · 4 informes
Female Applicants Down-Ranked by Amazon Recruiting Tool

2018 in Review: 10 AI Failures

Aug 2016 · 33 informes

Investigación

  • Definición de un “Incidente de IA”
  • Definición de una “Respuesta a incidentes de IA”
  • Hoja de ruta de la base de datos
  • Trabajo relacionado
  • Descargar Base de Datos Completa

Proyecto y Comunidad

  • Acerca de
  • Contactar y Seguir
  • Aplicaciones y resúmenes
  • Guía del editor

Incidencias

  • Todos los incidentes en forma de lista
  • Incidentes marcados
  • Cola de envío
  • Vista de clasificaciones
  • Taxonomías

2024 - AI Incident Database

  • Condiciones de uso
  • Política de privacidad
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • ecd56df