Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar

Incidente 603: Algorithmic Allocation of Resources in Healthcare for Disabled and Elderly Care Services Allegedly Harming Patients

Descripción: A healthcare algorithm designed to equitably distribute caregiving resources drastically cut care hours for the disabled and elderly, leading to significant hardships and harm. Initially developed for fair resource allocation, the system ultimately faced legal challenges for its inability to accurately assess individual needs, resulting in reduced essential care and raising ethical concerns about AI in healthcare decision-making.

Herramientas

Nuevo InformeNuevo InformeNueva RespuestaNueva RespuestaDescubrirDescubrirVer HistorialVer Historial

Entidades

Ver todas las entidades
Alleged: State governments y Brant Fries developed an AI system deployed by State governments , Idaho state government , Arkansas state government , Washington DC government , Pennsylvania state government , Iowa state government y Missouri state government, which harmed Disabled people , Elderly people , Low-income people , Larkin Seiler y Tammy Dobbs.

Estadísticas de incidentes

ID
603
Cantidad de informes
1
Fecha del Incidente
2021-07-02
Editores
Daniel Atherton
Applied Taxonomies
CSETv1, MIT

Clasificaciones de la Taxonomía CSETv1

Detalles de la Taxonomía

Incident Number

The number of the incident in the AI Incident Database.
 

603

Notes (special interest intangible harm)

Input any notes that may help explain your answers.
 

4.2 - The algorithm that cut Seiler's care in 2008 was declared unconstitutional by the court in 2016.

Special Interest Intangible Harm

An assessment of whether a special interest intangible harm occurred. This assessment does not consider the context of the intangible harm, if an AI was involved, or if there is characterizable class or subgroup of harmed entities. It is also not assessing if an intangible harm occurred. It is only asking if a special interest intangible harm occurred.
 

yes

Date of Incident Year

The year in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the year, estimate. Otherwise, leave blank. Enter in the format of YYYY
 

2008

Date of Incident Month

The month in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the month, estimate. Otherwise, leave blank. Enter in the format of MM
 

Date of Incident Day

The day on which the incident occurred. If a precise date is unavailable, leave blank. Enter in the format of DD
 

Clasificaciones de la Taxonomía MIT

Machine-Classified
Detalles de la Taxonomía

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

1.3. Unequal performance across groups

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. Discrimination and Toxicity

Entity

Which, if any, entity is presented as the main cause of the risk
 

AI

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Intentional

Informes del Incidente

Cronología de Informes

+1
¿Qué sucedió cuando un algoritmo "tremendamente irracional" tomó decisiones sanitarias cruciales?
¿Qué sucedió cuando un algoritmo "tremendamente irracional" tomó decisiones sanitarias cruciales?

¿Qué sucedió cuando un algoritmo "tremendamente irracional" tomó decisiones sanitarias cruciales?

theguardian.com

¿Qué sucedió cuando un algoritmo "tremendamente irracional" tomó decisiones sanitarias cruciales?
theguardian.com · 2021
Traducido por IA

Enfrentarse a un algoritmo fue una batalla diferente a cualquier otra que Larkin Seiler haya enfrentado.

Debido a su parálisis cerebral, este hombre de 40 años, que trabaja en una empresa de ingeniería ambiental y le encanta asistir a juego…

Variantes

Una "Variante" es un incidente que comparte los mismos factores causales, produce daños similares e involucra los mismos sistemas inteligentes que un incidente de IA conocido. En lugar de indexar las variantes como incidentes completamente separados, enumeramos las variaciones de los incidentes bajo el primer incidente similar enviado a la base de datos. A diferencia de otros tipos de envío a la base de datos de incidentes, no se requiere que las variantes tengan informes como evidencia externa a la base de datos de incidentes. Obtenga más información del trabajo de investigación.

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Employee Automatically Terminated by Computer Program

The man who was fired by a machine

Oct 2014 · 20 informes
Waze Allegedly Clogged Streets and Directed Drivers to Make Unsafe Traffic Decisions

Sherman Oaks residents blame Waze navigation app for clogging streets

Apr 2015 · 3 informes
Kronos Scheduling Algorithm Allegedly Caused Financial Issues for Starbucks Employees

Working Anything but 9 to 5

Aug 2014 · 10 informes
Incidente AnteriorSiguiente Incidente

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Employee Automatically Terminated by Computer Program

The man who was fired by a machine

Oct 2014 · 20 informes
Waze Allegedly Clogged Streets and Directed Drivers to Make Unsafe Traffic Decisions

Sherman Oaks residents blame Waze navigation app for clogging streets

Apr 2015 · 3 informes
Kronos Scheduling Algorithm Allegedly Caused Financial Issues for Starbucks Employees

Working Anything but 9 to 5

Aug 2014 · 10 informes

Investigación

  • Definición de un “Incidente de IA”
  • Definición de una “Respuesta a incidentes de IA”
  • Hoja de ruta de la base de datos
  • Trabajo relacionado
  • Descargar Base de Datos Completa

Proyecto y Comunidad

  • Acerca de
  • Contactar y Seguir
  • Aplicaciones y resúmenes
  • Guía del editor

Incidencias

  • Todos los incidentes en forma de lista
  • Incidentes marcados
  • Cola de envío
  • Vista de clasificaciones
  • Taxonomías

2024 - AI Incident Database

  • Condiciones de uso
  • Política de privacidad
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • ecd56df