Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar
Traducido por IA

Incidente 21: Una prueba de Turing más rigurosa expone la estupidez de los chatbots (migrado a Problema)

Traducido por IA
Descripción:
Traducido por IA
El Desafío de Esquemas de Winograd de 2016 puso de manifiesto cómo incluso los sistemas de IA más exitosos que participaron en el Desafío solo tuvieron un 3 % más de éxito que el azar. Este incidente se ha degradado a problema, ya que no cumple con los criterios de ingesta actuales.

Herramientas

Nuevo InformeNuevo InformeNueva RespuestaNueva RespuestaDescubrirDescubrirVer HistorialVer Historial

Entidades

Ver todas las entidades
Presunto: un sistema de IA desarrollado e implementado por Researchers, perjudicó a Researchers.

Estadísticas de incidentes

ID
21
Cantidad de informes
1
Fecha del Incidente
2016-07-14
Editores
Sean McGregor
Applied Taxonomies
CSETv0, GMF, CSETv1, MIT

Clasificaciones de la Taxonomía CSETv1

Detalles de la Taxonomía

Incident Number

The number of the incident in the AI Incident Database.
 

21

Estimated Date

“Yes” if the data was estimated. “No” otherwise.
 

No

Lives Lost

Indicates the number of deaths reported
 

0

Injuries

Indicate the number of injuries reported.
 

0

Estimated Harm Quantities

Indicates if the amount was estimated.
 

No

There is a potentially identifiable specific entity that experienced the harm

A potentially identifiable specific entity that experienced the harm can be characterized or identified.
 

No

Clasificaciones de la Taxonomía CSETv0

Detalles de la Taxonomía

Physical System

Where relevant, indicates whether the AI system(s) was embedded into or tightly associated with specific types of hardware.
 

Software only

Level of Autonomy

The degree to which the AI system(s) functions independently from human intervention. "High" means there is no human involved in the system action execution; "Medium" means the system generates a decision and a human oversees the resulting action; "low" means the system generates decision-support output and a human makes a decision and executes an action.
 

High

Nature of End User

"Expert" if users with special training or technical expertise were the ones meant to benefit from the AI system(s)’ operation; "Amateur" if the AI systems were primarily meant to benefit the general public or untrained users.
 

Expert

Public Sector Deployment

"Yes" if the AI system(s) involved in the accident were being used by the public sector or for the administration of public goods (for example, public transportation). "No" if the system(s) were being used in the private sector or for commercial purposes (for example, a ride-sharing company), on the other.
 

No

Lives Lost

Were human lives lost as a result of the incident?
 

No

Intent

Was the incident an accident, intentional, or is the intent unclear?
 

Unclear

Clasificaciones de la Taxonomía GMF

Detalles de la Taxonomía

Known AI Goal Snippets

One or more snippets that justify the classification.
 

(Snippet Text: The Winograd Schema Challenge asks computers to make sense of sentences that are ambiguous but usually simple for humans to parse., Related Classifications: Question Answering)

Clasificaciones de la Taxonomía MIT

Machine-Classified
Detalles de la Taxonomía

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

7.3. Lack of capability or robustness

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. AI system safety, failures, and limitations

Entity

Which, if any, entity is presented as the main cause of the risk
 

AI

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Pre-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Unintentional

Informes del Incidente

Cronología de Informes

Incident OccurrenceBase de datos de incidentes de AI Incidentes convertidos en problemas
Base de datos de incidentes de AI Incidentes convertidos en problemas

Base de datos de incidentes de AI Incidentes convertidos en problemas

github.com

Base de datos de incidentes de AI Incidentes convertidos en problemas
github.com · 2022
Traducido por IA

Los siguientes incidentes anteriores se han convertido a "problemas" luego de una actualización de definición de incidentes y criterios de ingestión.

21: Una prueba de Turing más dura expone la estupidez de los chatbots

Descripción: El Wino…

Variantes

Una "Variante" es un incidente de IA similar a un caso conocido—tiene los mismos causantes, daños y sistema de IA. En lugar de enumerarlo por separado, lo agrupamos bajo el primer incidente informado. A diferencia de otros incidentes, las variantes no necesitan haber sido informadas fuera de la AIID. Obtenga más información del trabajo de investigación.
¿Has visto algo similar?

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Inappropriate Gmail Smart Reply Suggestions

Inappropriate Gmail Smart Reply Suggestions

Nov 2015 · 22 informes
TayBot

TayBot

Mar 2016 · 28 informes
Gender Biases in Google Translate

Gender Biases in Google Translate

Apr 2017 · 10 informes
Incidente AnteriorSiguiente Incidente

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Inappropriate Gmail Smart Reply Suggestions

Inappropriate Gmail Smart Reply Suggestions

Nov 2015 · 22 informes
TayBot

TayBot

Mar 2016 · 28 informes
Gender Biases in Google Translate

Gender Biases in Google Translate

Apr 2017 · 10 informes

Investigación

  • Definición de un “Incidente de IA”
  • Definición de una “Respuesta a incidentes de IA”
  • Hoja de ruta de la base de datos
  • Trabajo relacionado
  • Descargar Base de Datos Completa

Proyecto y Comunidad

  • Acerca de
  • Contactar y Seguir
  • Aplicaciones y resúmenes
  • Guía del editor

Incidencias

  • Todos los incidentes en forma de lista
  • Incidentes marcados
  • Cola de envío
  • Vista de clasificaciones
  • Taxonomías

2024 - AI Incident Database

  • Condiciones de uso
  • Política de privacidad
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • 69ff178