Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar
Traducido por IA

Incidente 109: La inteligencia artificial de reconocimiento facial de PimEyes supuestamente carecía de salvaguardas para evitar su abuso.

Traducido por IA
Descripción:
Traducido por IA
PimEyes ofreció su servicio de inteligencia artificial basado en suscripción a cualquier persona en el público para buscar imágenes faciales coincidentes en Internet, pero los críticos dijeron que carecía de supervisión pública y de reglas gubernamentales para evitar su mal uso, como el acecho a las mujeres.

Herramientas

Nuevo InformeNuevo InformeNueva RespuestaNueva RespuestaDescubrirDescubrirVer HistorialVer Historial

Entidades

Ver todas las entidades
Presunto: un sistema de IA desarrollado e implementado por PimEyes, perjudicó a internet users.

Estadísticas de incidentes

ID
109
Cantidad de informes
1
Fecha del Incidente
2017-01-01
Editores
Sean McGregor, Khoa Lam
Applied Taxonomies
CSETv1, GMF, MIT

Clasificaciones de la Taxonomía CSETv1

Detalles de la Taxonomía

Incident Number

The number of the incident in the AI Incident Database.
 

109

AI Tangible Harm Level Notes

Notes about the AI tangible harm level assessment
 

The article notes the potential for nefarious actors like stalkers to use the PimEyes tool to do tangible harm.

Special Interest Intangible Harm

An assessment of whether a special interest intangible harm occurred. This assessment does not consider the context of the intangible harm, if an AI was involved, or if there is characterizable class or subgroup of harmed entities. It is also not assessing if an intangible harm occurred. It is only asking if a special interest intangible harm occurred.
 

maybe

Notes (AI special interest intangible harm)

If for 5.5 you select unclear or leave it blank, please provide a brief description of why. You can also add notes if you want to provide justification for a level.
 

Annotator 2:

It is unclear whether PimEyes violates peoples' privacy and whether or not that constitutes a rights violation.

Date of Incident Year

The year in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the year, estimate. Otherwise, leave blank. Enter in the format of YYYY
 

2021

Date of Incident Month

The month in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the month, estimate. Otherwise, leave blank. Enter in the format of MM
 

Clasificaciones de la Taxonomía MIT

Machine-Classified
Detalles de la Taxonomía

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

2.1. Compromise of privacy by obtaining, leaking or correctly inferring sensitive information

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. Privacy & Security

Entity

Which, if any, entity is presented as the main cause of the risk
 

Human

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Intentional

Informes del Incidente

Cronología de Informes

Incident OccurrenceEste sitio web de reconocimiento facial puede convertir a cualquiera en policía o acosador
Este sitio web de reconocimiento facial puede convertir a cualquiera en policía o acosador

Este sitio web de reconocimiento facial puede convertir a cualquiera en policía o acosador

washingtonpost.com

Este sitio web de reconocimiento facial puede convertir a cualquiera en policía o acosador
washingtonpost.com · 2021
Traducido por IA

PimEyes se ha convertido en un éxito entre los "creeps" digitales y otros ansiosos por investigar a los extraños. Los investigadores temen que no haya forma de evitar que se abuse de él. El sitio de reconocimiento facial PimEyes es una de l…

Variantes

Una "Variante" es un incidente de IA similar a un caso conocido—tiene los mismos causantes, daños y sistema de IA. En lugar de enumerarlo por separado, lo agrupamos bajo el primer incidente informado. A diferencia de otros incidentes, las variantes no necesitan haber sido informadas fuera de la AIID. Obtenga más información del trabajo de investigación.
¿Has visto algo similar?

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Predictive Policing Biases of PredPol

Predictive Policing Biases of PredPol

Nov 2015 · 17 informes
Ever AI Reportedly Deceived Customers about FRT Use in App

Ever AI Reportedly Deceived Customers about FRT Use in App

Apr 2019 · 7 informes
Research Prototype AI, Delphi, Reportedly Gave Racially Biased Answers on Ethics

Research Prototype AI, Delphi, Reportedly Gave Racially Biased Answers on Ethics

Oct 2021 · 3 informes
Incidente AnteriorSiguiente Incidente

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Predictive Policing Biases of PredPol

Predictive Policing Biases of PredPol

Nov 2015 · 17 informes
Ever AI Reportedly Deceived Customers about FRT Use in App

Ever AI Reportedly Deceived Customers about FRT Use in App

Apr 2019 · 7 informes
Research Prototype AI, Delphi, Reportedly Gave Racially Biased Answers on Ethics

Research Prototype AI, Delphi, Reportedly Gave Racially Biased Answers on Ethics

Oct 2021 · 3 informes

Investigación

  • Definición de un “Incidente de IA”
  • Definición de una “Respuesta a incidentes de IA”
  • Hoja de ruta de la base de datos
  • Trabajo relacionado
  • Descargar Base de Datos Completa

Proyecto y Comunidad

  • Acerca de
  • Contactar y Seguir
  • Aplicaciones y resúmenes
  • Guía del editor

Incidencias

  • Todos los incidentes en forma de lista
  • Incidentes marcados
  • Cola de envío
  • Vista de clasificaciones
  • Taxonomías

2024 - AI Incident Database

  • Condiciones de uso
  • Política de privacidad
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • 69ff178