Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar
Traducido por IA

Incidente 96: Las escuelas de Houston deben enfrentar una demanda por evaluación docente

Traducido por IA
Descripción:
Traducido por IA
El 4 de mayo de 2017, un juez federal de EE. UU. apoyó los reclamos de los docentes de que las evaluaciones algorítmicas de los docentes del Distrito Escolar Independiente de Houston violaban sus derechos al debido proceso en sus trabajos al no permitirles revisar los motivos de su despido.

Herramientas

Nuevo InformeNuevo InformeNueva RespuestaNueva RespuestaDescubrirDescubrirVer HistorialVer Historial

Entidades

Ver todas las entidades
Alleged: SAS Institute developed an AI system deployed by Houston Independent School District, which harmed Houston Independent School District teachers.

Estadísticas de incidentes

ID
96
Cantidad de informes
1
Fecha del Incidente
2017-05-08
Editores
Sean McGregor, Khoa Lam
Applied Taxonomies
CSETv0, CSETv1, GMF, MIT

Clasificaciones de la Taxonomía CSETv1

Detalles de la Taxonomía

Incident Number

The number of the incident in the AI Incident Database.
 

96

AI Tangible Harm Level Notes

Notes about the AI tangible harm level assessment
 

3.5 - the value-added measurement/modeling is not AI - it is a statistical model

Clasificaciones de la Taxonomía CSETv0

Detalles de la Taxonomía

Problem Nature

Indicates which, if any, of the following types of AI failure describe the incident: "Specification," i.e. the system's behavior did not align with the true intentions of its designer, operator, etc; "Robustness," i.e. the system operated unsafely because of features or changes in its environment, or in the inputs the system received; "Assurance," i.e. the system could not be adequately monitored or controlled during operation.
 

Specification

Physical System

Where relevant, indicates whether the AI system(s) was embedded into or tightly associated with specific types of hardware.
 

Software only

Level of Autonomy

The degree to which the AI system(s) functions independently from human intervention. "High" means there is no human involved in the system action execution; "Medium" means the system generates a decision and a human oversees the resulting action; "low" means the system generates decision-support output and a human makes a decision and executes an action.
 

Low

Nature of End User

"Expert" if users with special training or technical expertise were the ones meant to benefit from the AI system(s)’ operation; "Amateur" if the AI systems were primarily meant to benefit the general public or untrained users.
 

Amateur

Public Sector Deployment

"Yes" if the AI system(s) involved in the accident were being used by the public sector or for the administration of public goods (for example, public transportation). "No" if the system(s) were being used in the private sector or for commercial purposes (for example, a ride-sharing company), on the other.
 

No

Data Inputs

A brief description of the data that the AI system(s) used or were trained on.
 

test grades

Clasificaciones de la Taxonomía MIT

Machine-Classified
Detalles de la Taxonomía

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

7.4. Lack of transparency or interpretability

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. AI system safety, failures, and limitations

Entity

Which, if any, entity is presented as the main cause of the risk
 

AI

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Unintentional

Informes del Incidente

Cronología de Informes

+1
Las escuelas de Houston deben enfrentar una demanda por evaluación de maestros
Las escuelas de Houston deben enfrentar una demanda por evaluación de maestros

Las escuelas de Houston deben enfrentar una demanda por evaluación de maestros

courthousenews.com

Las escuelas de Houston deben enfrentar una demanda por evaluación de maestros
courthousenews.com · 2017
Traducido por IA

HOUSTON (CN) – Un sistema patentado que mide el desempeño de los maestros en función de los puntajes de las pruebas de los estudiantes puede violar los derechos civiles de los maestros porque no pueden verificar que los resultados sean prec…

Variantes

Una "Variante" es un incidente de IA similar a un caso conocido—tiene los mismos causantes, daños y sistema de IA. En lugar de enumerarlo por separado, lo agrupamos bajo el primer incidente informado. A diferencia de otros incidentes, las variantes no necesitan haber sido informadas fuera de la AIID. Obtenga más información del trabajo de investigación.
¿Has visto algo similar?

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Predictive Policing Program by Florida Sheriff’s Office Allegedly Violated Residents’ Rights and Targeted Children of Vulnerable Groups

Predictive Policing Program by Florida Sheriff’s Office Allegedly Violated Residents’ Rights and Targeted Children of Vulnerable Groups

Sep 2015 · 12 informes
NY City School Teacher Evaluation Algorithm Contested

NY City School Teacher Evaluation Algorithm Contested

Feb 2012 · 7 informes
Northpointe Risk Models

Northpointe Risk Models

May 2016 · 15 informes
Incidente AnteriorSiguiente Incidente

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Predictive Policing Program by Florida Sheriff’s Office Allegedly Violated Residents’ Rights and Targeted Children of Vulnerable Groups

Predictive Policing Program by Florida Sheriff’s Office Allegedly Violated Residents’ Rights and Targeted Children of Vulnerable Groups

Sep 2015 · 12 informes
NY City School Teacher Evaluation Algorithm Contested

NY City School Teacher Evaluation Algorithm Contested

Feb 2012 · 7 informes
Northpointe Risk Models

Northpointe Risk Models

May 2016 · 15 informes

Investigación

  • Definición de un “Incidente de IA”
  • Definición de una “Respuesta a incidentes de IA”
  • Hoja de ruta de la base de datos
  • Trabajo relacionado
  • Descargar Base de Datos Completa

Proyecto y Comunidad

  • Acerca de
  • Contactar y Seguir
  • Aplicaciones y resúmenes
  • Guía del editor

Incidencias

  • Todos los incidentes en forma de lista
  • Incidentes marcados
  • Cola de envío
  • Vista de clasificaciones
  • Taxonomías

2024 - AI Incident Database

  • Condiciones de uso
  • Política de privacidad
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • 69ff178