Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar
Traducido por IA

Incidente 754: Políticas británicas víctimas de pornografía deepfake

Traducido por IA
Descripción:
Traducido por IA
Políticas británicas, como Angela Rayner, Gillian Keegan, Penny Mordaunt, Priti Patel, Stella Creasy y Dehenna Davison, han sido blanco de pornografía deepfake no consentida generada por inteligencia artificial. Las imágenes, algunas de ellas en línea desde hace años, han causado gran angustia y han obligado a la intervención policial.

Herramientas

Nuevo InformeNuevo InformeNueva RespuestaNueva RespuestaDescubrirDescubrirVer HistorialVer Historial

Entidades

Ver todas las entidades
Presunto: un sistema de IA desarrollado e implementado por Unknown deepfake creators, perjudicó a Stella Creasy , Priti Patel , Penny Mordaunt , Gillian Keegan , Dehenna Davison y Angela Rayner.

Estadísticas de incidentes

ID
754
Cantidad de informes
1
Fecha del Incidente
2024-07-01
Editores
Daniel Atherton
Applied Taxonomies
MIT

Clasificaciones de la Taxonomía MIT

Machine-Classified
Detalles de la Taxonomía

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

4.3. Fraud, scams, and targeted manipulation

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. Malicious Actors & Misuse

Entity

Which, if any, entity is presented as the main cause of the risk
 

Human

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Intentional

Informes del Incidente

Cronología de Informes

+1
British female politicians targeted by fake pornography
British female politicians targeted by fake pornography

British female politicians targeted by fake pornography

theguardian.com

British female politicians targeted by fake pornography
theguardian.com · 2024

British female politicians have become the victims of fake pornography, with some of their faces used in nude images created using artificial intelligence.

Political candidates targeted on one prominent fake pornography website include: the…

Variantes

Una "Variante" es un incidente de IA similar a un caso conocido—tiene los mismos causantes, daños y sistema de IA. En lugar de enumerarlo por separado, lo agrupamos bajo el primer incidente informado. A diferencia de otros incidentes, las variantes no necesitan haber sido informadas fuera de la AIID. Obtenga más información del trabajo de investigación.
¿Has visto algo similar?

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Facial Recognition Trial Performed Poorly at Notting Hill Carnival

Facial Recognition Trial Performed Poorly at Notting Hill Carnival

Aug 2017 · 4 informes
Microsoft’s Algorithm Allegedly Selected Photo of the Wrong Mixed-Race Person Featured in a News Story

Microsoft’s Algorithm Allegedly Selected Photo of the Wrong Mixed-Race Person Featured in a News Story

Jun 2020 · 12 informes
Opaque Fraud Detection Algorithm by the UK’s Department of Work and Pensions Allegedly Discriminated against People with Disabilities

Opaque Fraud Detection Algorithm by the UK’s Department of Work and Pensions Allegedly Discriminated against People with Disabilities

Oct 2019 · 6 informes
Incidente AnteriorSiguiente Incidente

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Facial Recognition Trial Performed Poorly at Notting Hill Carnival

Facial Recognition Trial Performed Poorly at Notting Hill Carnival

Aug 2017 · 4 informes
Microsoft’s Algorithm Allegedly Selected Photo of the Wrong Mixed-Race Person Featured in a News Story

Microsoft’s Algorithm Allegedly Selected Photo of the Wrong Mixed-Race Person Featured in a News Story

Jun 2020 · 12 informes
Opaque Fraud Detection Algorithm by the UK’s Department of Work and Pensions Allegedly Discriminated against People with Disabilities

Opaque Fraud Detection Algorithm by the UK’s Department of Work and Pensions Allegedly Discriminated against People with Disabilities

Oct 2019 · 6 informes

Investigación

  • Definición de un “Incidente de IA”
  • Definición de una “Respuesta a incidentes de IA”
  • Hoja de ruta de la base de datos
  • Trabajo relacionado
  • Descargar Base de Datos Completa

Proyecto y Comunidad

  • Acerca de
  • Contactar y Seguir
  • Aplicaciones y resúmenes
  • Guía del editor

Incidencias

  • Todos los incidentes en forma de lista
  • Incidentes marcados
  • Cola de envío
  • Vista de clasificaciones
  • Taxonomías

2024 - AI Incident Database

  • Condiciones de uso
  • Política de privacidad
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • 69ff178