Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar

Incidente 747: Fatalities Reportedly Occur Despite VioGén Algorithm's Low or Negligible Risk Scores

Descripción: The VioGén algorithm was designed to help Spanish police assess and prioritize the risk of repeat domestic violence incidents. However, its low-risk assessment of Lobna Hemid reportedly led to inadequate protection; her husband murdered her. Since 2007, 247 women have been killed after being assessed by VioGén. A review of 98 homicides found that 55 of the slain women were scored as negligible or low risk.

Herramientas

Nuevo InformeNuevo InformeNueva RespuestaNueva RespuestaDescubrirDescubrirVer HistorialVer Historial

Entidades

Ver todas las entidades
Alleged: Spanish law enforcement agencies , Spanish Interior Ministry y VioGén algorithm development team developed an AI system deployed by Spanish law enforcement agencies y Spanish Interior Ministry, which harmed Women in Spain , Stefany González Escarraman , Spanish general public , María , Luz , Lobna Hemid , Eva Jaular y 247 women in Spain (unnamed).

Estadísticas de incidentes

ID
747
Cantidad de informes
1
Fecha del Incidente
2024-07-18
Editores
Daniel Atherton
Applied Taxonomies
MIT

Clasificaciones de la Taxonomía MIT

Machine-Classified
Detalles de la Taxonomía

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

7.3. Lack of capability or robustness

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. AI system safety, failures, and limitations

Entity

Which, if any, entity is presented as the main cause of the risk
 

AI

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Unintentional

Informes del Incidente

Cronología de Informes

+1
An Algorithm Told Police She Was Safe. Then Her Husband Killed Her.
An Algorithm Told Police She Was Safe. Then Her Husband Killed Her.

An Algorithm Told Police She Was Safe. Then Her Husband Killed Her.

nytimes.com

An Algorithm Told Police She Was Safe. Then Her Husband Killed Her.
nytimes.com · 2024

In a small apartment outside Madrid on Jan. 11, 2022, an argument over household chores turned violent when Lobna Hemid's husband smashed a wooden shoe rack and used one of the broken pieces to beat her. Her screams were heard by neighbors.…

Variantes

Una "Variante" es un incidente que comparte los mismos factores causales, produce daños similares e involucra los mismos sistemas inteligentes que un incidente de IA conocido. En lugar de indexar las variantes como incidentes completamente separados, enumeramos las variaciones de los incidentes bajo el primer incidente similar enviado a la base de datos. A diferencia de otros tipos de envío a la base de datos de incidentes, no se requiere que las variantes tengan informes como evidencia externa a la base de datos de incidentes. Obtenga más información del trabajo de investigación.

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Uber AV Killed Pedestrian in Arizona

Tempe police release report, audio, photo

Mar 2018 · 25 informes
Predictive Policing Biases of PredPol

Policing the Future

Nov 2015 · 17 informes
Arkansas's Opaque Algorithm to Allocate Health Care Excessively Cut Down Hours for Beneficiaries

What Happens When An Algorithm Cuts Your Health Care

Jan 2016 · 2 informes
Incidente AnteriorSiguiente Incidente

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Uber AV Killed Pedestrian in Arizona

Tempe police release report, audio, photo

Mar 2018 · 25 informes
Predictive Policing Biases of PredPol

Policing the Future

Nov 2015 · 17 informes
Arkansas's Opaque Algorithm to Allocate Health Care Excessively Cut Down Hours for Beneficiaries

What Happens When An Algorithm Cuts Your Health Care

Jan 2016 · 2 informes

Investigación

  • Definición de un “Incidente de IA”
  • Definición de una “Respuesta a incidentes de IA”
  • Hoja de ruta de la base de datos
  • Trabajo relacionado
  • Descargar Base de Datos Completa

Proyecto y Comunidad

  • Acerca de
  • Contactar y Seguir
  • Aplicaciones y resúmenes
  • Guía del editor

Incidencias

  • Todos los incidentes en forma de lista
  • Incidentes marcados
  • Cola de envío
  • Vista de clasificaciones
  • Taxonomías

2024 - AI Incident Database

  • Condiciones de uso
  • Política de privacidad
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • ecd56df