Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar

Incidente 738: Department for Work and Pensions (DWP) Algorithm Wrongly Flags 200,000 for Housing Benefit Fraud

Descripción: A Department for Work and Pensions (DWP) algorithm wrongly flagged over 200,000 UK housing benefit claims as high risk, resulting in unnecessary investigations. Two-thirds of these flagged claims were legitimate, causing wasted public funds and stress for claimants. Despite initial success in a pilot, the algorithm's real-world performance fell short. This incident highlights the risks of overreliance on automated systems in welfare administration.

Herramientas

Nuevo InformeNuevo InformeNueva RespuestaNueva RespuestaDescubrirDescubrirVer HistorialVer Historial

Entidades

Ver todas las entidades
Presunto: un sistema de IA desarrollado e implementado por Department for Work and Pensions (DWP), perjudicó a UK general public y UK housing benefit claimants.

Estadísticas de incidentes

ID
738
Cantidad de informes
5
Fecha del Incidente
2024-06-23
Editores
Daniel Atherton
Applied Taxonomies
MIT

Clasificaciones de la Taxonomía MIT

Machine-Classified
Detalles de la Taxonomía

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

1.3. Unequal performance across groups

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. Discrimination and Toxicity

Entity

Which, if any, entity is presented as the main cause of the risk
 

AI

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Unintentional

Informes del Incidente

Cronología de Informes

+1
El algoritmo DWP señala erróneamente a 200.000 personas por posible fraude y error
+2
DWP algorithm 'wrongly flags' 200,000 people for fraud
DWP wrongly suspects hundreds of thousands of benefits claimants of fraud
El algoritmo DWP señala erróneamente a 200.000 personas por posible fraude y error

El algoritmo DWP señala erróneamente a 200.000 personas por posible fraude y error

theguardian.com

DWP algorithm 'wrongly flags' 200,000 people for fraud

DWP algorithm 'wrongly flags' 200,000 people for fraud

uk.news.yahoo.com

DWP algorithm wrongly forces over 200,000 people through benefit fraud investigations

DWP algorithm wrongly forces over 200,000 people through benefit fraud investigations

thecanary.co

DWP Algorithm Mistakenly Identifies 200,000 Individuals as Potential Fraud Cases

DWP Algorithm Mistakenly Identifies 200,000 Individuals as Potential Fraud Cases

en.econostrum.info

DWP wrongly suspects hundreds of thousands of benefits claimants of fraud

DWP wrongly suspects hundreds of thousands of benefits claimants of fraud

walesonline.co.uk

El algoritmo DWP señala erróneamente a 200.000 personas por posible fraude y error
theguardian.com · 2024
Traducido por IA

Más de 200.000 personas se han enfrentado erróneamente a una investigación por fraude y error en prestaciones de vivienda después de que el rendimiento de un algoritmo gubernamental no cumpliera con las expectativas, según puede revelar The…

DWP algorithm 'wrongly flags' 200,000 people for fraud
uk.news.yahoo.com · 2024

200,000 Department for Work and Pensions claimants have been warned they have "wrongly" been triggered for "fraud and error". The DWP algorithm has "wrongly flagged" 200,000 people for possible fraud and error, according to the Guardian new…

DWP algorithm wrongly forces over 200,000 people through benefit fraud investigations
thecanary.co · 2024

The Canary has previously reported how the Department for Work and Pensions (DWP) reliance on AI and algorithmic technology for benefit fraud detection could put disabled and chronically ill claimants at risk. Now, new data obtained by a ca…

DWP Algorithm Mistakenly Identifies 200,000 Individuals as Potential Fraud Cases
en.econostrum.info · 2024

According to the Guardian, more than 200,000 people have been wrongfully investigated for housing benefit fraud and error after a government algorithm failed to operate as expected.

Two-thirds of claims marked as potentially high risk by a …

DWP wrongly suspects hundreds of thousands of benefits claimants of fraud
walesonline.co.uk · 2024

More than 200,000 people have been wrongly investigated for housing benefit fraud and error. Over the last three years two-thirds of claims flagged as potentially high risk by a Department for Work and Pensions (DWP) automated system were a…

Variantes

Una "Variante" es un incidente que comparte los mismos factores causales, produce daños similares e involucra los mismos sistemas inteligentes que un incidente de IA conocido. En lugar de indexar las variantes como incidentes completamente separados, enumeramos las variaciones de los incidentes bajo el primer incidente similar enviado a la base de datos. A diferencia de otros tipos de envío a la base de datos de incidentes, no se requiere que las variantes tengan informes como evidencia externa a la base de datos de incidentes. Obtenga más información del trabajo de investigación.

Incidentes Similares

Selected by our editors
UK Government AI Allegedly Targets Disproportionate Numbers of Certain Nationals for Fraud Review

MP raises concern over Bulgarian nationals’ UK benefit suspensions

Dec 2021 · 13 informes
Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Opaque Fraud Detection Algorithm by the UK’s Department of Work and Pensions Allegedly Discriminated against People with Disabilities

DWP urged to reveal algorithm that ‘targets’ disabled for benefit fraud

Oct 2019 · 6 informes
ETS Used Allegedly Flawed Voice Recognition Evidence to Accuse and Assess Scale of Cheating, Causing Thousands to be Deported from the UK

The English test that ruined thousands of lives

Jan 2014 · 1 informe
Facial Recognition Trial Performed Poorly at Notting Hill Carnival

Don’t Believe the Algorithm

Aug 2017 · 4 informes
Incidente AnteriorSiguiente Incidente

Incidentes Similares

Selected by our editors
UK Government AI Allegedly Targets Disproportionate Numbers of Certain Nationals for Fraud Review

MP raises concern over Bulgarian nationals’ UK benefit suspensions

Dec 2021 · 13 informes
Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Opaque Fraud Detection Algorithm by the UK’s Department of Work and Pensions Allegedly Discriminated against People with Disabilities

DWP urged to reveal algorithm that ‘targets’ disabled for benefit fraud

Oct 2019 · 6 informes
ETS Used Allegedly Flawed Voice Recognition Evidence to Accuse and Assess Scale of Cheating, Causing Thousands to be Deported from the UK

The English test that ruined thousands of lives

Jan 2014 · 1 informe
Facial Recognition Trial Performed Poorly at Notting Hill Carnival

Don’t Believe the Algorithm

Aug 2017 · 4 informes

Investigación

  • Definición de un “Incidente de IA”
  • Definición de una “Respuesta a incidentes de IA”
  • Hoja de ruta de la base de datos
  • Trabajo relacionado
  • Descargar Base de Datos Completa

Proyecto y Comunidad

  • Acerca de
  • Contactar y Seguir
  • Aplicaciones y resúmenes
  • Guía del editor

Incidencias

  • Todos los incidentes en forma de lista
  • Incidentes marcados
  • Cola de envío
  • Vista de clasificaciones
  • Taxonomías

2024 - AI Incident Database

  • Condiciones de uso
  • Política de privacidad
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • ecd56df