Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar

Incidente 704: Study Highlights Persistent Hallucinations in Legal AI Systems

Descripción: Stanford University’s Human-Centered AI Institute (HAI) conducted a study in which they designed a "pre-registered dataset of over 200 open-ended legal queries" to test AI products by LexisNexis (creator of Lexis+ AI) and Thomson Reuters (creator of Westlaw AI-Assisted Research and Ask Practical Law AI). The researchers found that these legal models hallucinate in 1 out of 6 (or more) benchmarking queries.

Herramientas

Nuevo InformeNuevo InformeNueva RespuestaNueva RespuestaDescubrirDescubrirVer HistorialVer Historial

Entidades

Ver todas las entidades
Alleged: Thomson Reuters y LexisNexis developed an AI system deployed by Legal professionals , Law firms y Organizations requiring legal research, which harmed Legal professionals , Clients of lawyers y Legal system.

Estadísticas de incidentes

ID
704
Cantidad de informes
2
Fecha del Incidente
2024-05-23
Editores
Daniel Atherton
Applied Taxonomies
MIT

Clasificaciones de la Taxonomía MIT

Machine-Classified
Detalles de la Taxonomía

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

7.3. Lack of capability or robustness

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. AI system safety, failures, and limitations

Entity

Which, if any, entity is presented as the main cause of the risk
 

AI

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Unintentional

Informes del Incidente

Cronología de Informes

+1
AI on Trial: Legal Models Hallucinate in 1 out of 6 (or More) Benchmarking Queries
We asked ChatGPT for legal advice—here are five reasons why you shouldn't
AI on Trial: Legal Models Hallucinate in 1 out of 6 (or More) Benchmarking Queries

AI on Trial: Legal Models Hallucinate in 1 out of 6 (or More) Benchmarking Queries

hai.stanford.edu

We asked ChatGPT for legal advice—here are five reasons why you shouldn't

We asked ChatGPT for legal advice—here are five reasons why you shouldn't

theconversation.com

AI on Trial: Legal Models Hallucinate in 1 out of 6 (or More) Benchmarking Queries
hai.stanford.edu · 2024

Artificial intelligence (AI) tools are rapidly transforming the practice of law. Nearly three quarters of lawyers plan on using generative AI for their work, from sifting through mountains of case law to drafting contracts to reviewing docu…

We asked ChatGPT for legal advice—here are five reasons why you shouldn't
theconversation.com · 2024

At some point in your life, you are likely to need legal advice. A survey carried out in 2023 by the Law Society, the Legal Services Board and YouGov found that two-thirds of respondents had experienced a legal issue in the past four years.…

Variantes

Una "Variante" es un incidente que comparte los mismos factores causales, produce daños similares e involucra los mismos sistemas inteligentes que un incidente de IA conocido. En lugar de indexar las variantes como incidentes completamente separados, enumeramos las variaciones de los incidentes bajo el primer incidente similar enviado a la base de datos. A diferencia de otros tipos de envío a la base de datos de incidentes, no se requiere que las variantes tengan informes como evidencia externa a la base de datos de incidentes. Obtenga más información del trabajo de investigación.

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

COMPAS Algorithm Performs Poorly in Crime Recidivism Prediction

A Popular Algorithm Is No Better at Predicting Crimes Than Random People

May 2016 · 22 informes
Gender Biases in Google Translate

Semantics derived automatically from language corpora contain human-like biases

Apr 2017 · 10 informes
Personal voice assistants struggle with black voices, new study shows

Personal voice assistants struggle with black voices, new study shows

Mar 2020 · 2 informes
Incidente AnteriorSiguiente Incidente

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

COMPAS Algorithm Performs Poorly in Crime Recidivism Prediction

A Popular Algorithm Is No Better at Predicting Crimes Than Random People

May 2016 · 22 informes
Gender Biases in Google Translate

Semantics derived automatically from language corpora contain human-like biases

Apr 2017 · 10 informes
Personal voice assistants struggle with black voices, new study shows

Personal voice assistants struggle with black voices, new study shows

Mar 2020 · 2 informes

Investigación

  • Definición de un “Incidente de IA”
  • Definición de una “Respuesta a incidentes de IA”
  • Hoja de ruta de la base de datos
  • Trabajo relacionado
  • Descargar Base de Datos Completa

Proyecto y Comunidad

  • Acerca de
  • Contactar y Seguir
  • Aplicaciones y resúmenes
  • Guía del editor

Incidencias

  • Todos los incidentes en forma de lista
  • Incidentes marcados
  • Cola de envío
  • Vista de clasificaciones
  • Taxonomías

2024 - AI Incident Database

  • Condiciones de uso
  • Política de privacidad
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • ecd56df