Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar
Traducido por IA

Incidente 660: Una investigación revela que pornografía deepfake no autorizada perjudica a miles de celebridades

Traducido por IA
Descripción:
Traducido por IA
Una investigación de Channel 4 News alega que casi 4.000 celebridades a nivel mundial, incluyendo 255 figuras británicas, fueron víctimas de pornografía deepfake. Se superpusieron rostros a contenido explícito mediante inteligencia artificial, y los principales sitios de deepfake obtuvieron 100 millones de visitas en tres meses, según sus hallazgos.

Herramientas

Nuevo InformeNuevo InformeNueva RespuestaNueva RespuestaDescubrirDescubrirVer HistorialVer Historial

Entidades

Ver todas las entidades
Alleged: Unknown deepfake technology developers developed an AI system deployed by Deepfake website operators, which harmed celebrities , British public figures y Cathy Newman.

Estadísticas de incidentes

ID
660
Cantidad de informes
1
Fecha del Incidente
2024-03-21
Editores
Daniel Atherton
Applied Taxonomies
MIT

Clasificaciones de la Taxonomía MIT

Machine-Classified
Detalles de la Taxonomía

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

4.3. Fraud, scams, and targeted manipulation

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. Malicious Actors & Misuse

Entity

Which, if any, entity is presented as the main cause of the risk
 

Human

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Intentional

Informes del Incidente

Cronología de Informes

+1
Nearly 4,000 celebrities found to be victims of deepfake pornography
Nearly 4,000 celebrities found to be victims of deepfake pornography

Nearly 4,000 celebrities found to be victims of deepfake pornography

theguardian.com

Nearly 4,000 celebrities found to be victims of deepfake pornography
theguardian.com · 2024

More than 250 British celebrities are among the thousands of famous people who are victims of deepfake pornography, an investigation has found.

A Channel 4 News analysis of the five most visited deepfake websites found almost 4,000 famous i…

Variantes

Una "Variante" es un incidente de IA similar a un caso conocido—tiene los mismos causantes, daños y sistema de IA. En lugar de enumerarlo por separado, lo agrupamos bajo el primer incidente informado. A diferencia de otros incidentes, las variantes no necesitan haber sido informadas fuera de la AIID. Obtenga más información del trabajo de investigación.
¿Has visto algo similar?

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Opaque Fraud Detection Algorithm by the UK’s Department of Work and Pensions Allegedly Discriminated against People with Disabilities

Opaque Fraud Detection Algorithm by the UK’s Department of Work and Pensions Allegedly Discriminated against People with Disabilities

Oct 2019 · 6 informes
Facial Recognition Trial Performed Poorly at Notting Hill Carnival

Facial Recognition Trial Performed Poorly at Notting Hill Carnival

Aug 2017 · 4 informes
ETS Used Allegedly Flawed Voice Recognition Evidence to Accuse and Assess Scale of Cheating, Causing Thousands to be Deported from the UK

ETS Used Allegedly Flawed Voice Recognition Evidence to Accuse and Assess Scale of Cheating, Causing Thousands to be Deported from the UK

Jan 2014 · 1 informe
Incidente AnteriorSiguiente Incidente

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Opaque Fraud Detection Algorithm by the UK’s Department of Work and Pensions Allegedly Discriminated against People with Disabilities

Opaque Fraud Detection Algorithm by the UK’s Department of Work and Pensions Allegedly Discriminated against People with Disabilities

Oct 2019 · 6 informes
Facial Recognition Trial Performed Poorly at Notting Hill Carnival

Facial Recognition Trial Performed Poorly at Notting Hill Carnival

Aug 2017 · 4 informes
ETS Used Allegedly Flawed Voice Recognition Evidence to Accuse and Assess Scale of Cheating, Causing Thousands to be Deported from the UK

ETS Used Allegedly Flawed Voice Recognition Evidence to Accuse and Assess Scale of Cheating, Causing Thousands to be Deported from the UK

Jan 2014 · 1 informe

Investigación

  • Definición de un “Incidente de IA”
  • Definición de una “Respuesta a incidentes de IA”
  • Hoja de ruta de la base de datos
  • Trabajo relacionado
  • Descargar Base de Datos Completa

Proyecto y Comunidad

  • Acerca de
  • Contactar y Seguir
  • Aplicaciones y resúmenes
  • Guía del editor

Incidencias

  • Todos los incidentes en forma de lista
  • Incidentes marcados
  • Cola de envío
  • Vista de clasificaciones
  • Taxonomías

2024 - AI Incident Database

  • Condiciones de uso
  • Política de privacidad
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • 69ff178