Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar

Incidente 582: Racial Bias in Lung Function Diagnostic Algorithm Leads to Underdiagnosis in Black Men

Descripción: A study published in JAMA Network Open reveals that racial bias built into a commonly used medical diagnostic algorithm for lung function may be leading to underdiagnoses of breathing problems in Black men. The study suggests that as many as 40% more Black male patients might have been accurately diagnosed if the software were not racially biased. The software algorithm adjusts diagnostic thresholds based on race, affecting medical treatments and interventions.

Herramientas

Nuevo InformeNuevo InformeNueva RespuestaNueva RespuestaDescubrirDescubrirVer HistorialVer Historial

Entidades

Ver todas las entidades
Alleged: unknown developed an AI system deployed by University of Pennsylvania Health System, which harmed Black men who underwent lung function tests between 2010 and 2020 and potentially received inaccurate or delayed diagnoses and medical interventions due to the biased algorithm.

Estadísticas de incidentes

ID
582
Cantidad de informes
1
Fecha del Incidente
2023-06-01
Editores
Daniel Atherton
Applied Taxonomies
MIT

Clasificaciones de la Taxonomía MIT

Machine-Classified
Detalles de la Taxonomía

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

1.3. Unequal performance across groups

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. Discrimination and Toxicity

Entity

Which, if any, entity is presented as the main cause of the risk
 

AI

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Unintentional

Informes del Incidente

Cronología de Informes

+1
Los hombres negros probablemente fueron subdiagnosticados con problemas pulmonares debido al sesgo en el software, sugiere un estudio
Los hombres negros probablemente fueron subdiagnosticados con problemas pulmonares debido al sesgo en el software, sugiere un estudio

Los hombres negros probablemente fueron subdiagnosticados con problemas pulmonares debido al sesgo en el software, sugiere un estudio

apnews.com

Los hombres negros probablemente fueron subdiagnosticados con problemas pulmonares debido al sesgo en el software, sugiere un estudio
apnews.com · 2023
Traducido por IA

NUEVA YORK (AP) — El sesgo racial incorporado en una prueba médica común para la función pulmonar probablemente esté provocando que menos pacientes negros reciban atención por problemas respiratorios, sugiere un estudio publicado el jueves.…

Variantes

Una "Variante" es un incidente que comparte los mismos factores causales, produce daños similares e involucra los mismos sistemas inteligentes que un incidente de IA conocido. En lugar de indexar las variantes como incidentes completamente separados, enumeramos las variaciones de los incidentes bajo el primer incidente similar enviado a la base de datos. A diferencia de otros tipos de envío a la base de datos de incidentes, no se requiere que las variantes tengan informes como evidencia externa a la base de datos de incidentes. Obtenga más información del trabajo de investigación.
Incidente AnteriorSiguiente Incidente

Investigación

  • Definición de un “Incidente de IA”
  • Definición de una “Respuesta a incidentes de IA”
  • Hoja de ruta de la base de datos
  • Trabajo relacionado
  • Descargar Base de Datos Completa

Proyecto y Comunidad

  • Acerca de
  • Contactar y Seguir
  • Aplicaciones y resúmenes
  • Guía del editor

Incidencias

  • Todos los incidentes en forma de lista
  • Incidentes marcados
  • Cola de envío
  • Vista de clasificaciones
  • Taxonomías

2024 - AI Incident Database

  • Condiciones de uso
  • Política de privacidad
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • ecd56df