Incidente 168: El filtrado colaborativo es propenso al sesgo de popularidad, lo que resulta en una sobrerrepresentación de elementos populares en los resultados de recomendación.
Descripción: El filtrado colaborativo es propenso al sesgo de popularidad, lo que resulta en una sobrerrepresentación de elementos populares en los resultados de recomendaciones.
Entidades
Ver todas las entidadesPresunto: un sistema de IA desarrollado e implementado por Facebook , LinkedIn , YouTube , Twitter y Netflix, perjudicó a Facebook users , LinkedIn users , YouTube users , Twitter Users y Netflix users.
Risk Subdomain
A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
1.3. Unequal performance across groups
Risk Domain
The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
- Discrimination and Toxicity
Entity
Which, if any, entity is presented as the main cause of the risk
AI
Timing
The stage in the AI lifecycle at which the risk is presented as occurring
Post-deployment
Intent
Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
Unintentional
Informes del Incidente
Cronología de Informes

Introducción
El filtrado colaborativo (CF) es uno de los conceptos más tradicionales pero también más poderosos para calcular recomendaciones personalizadas [22] y se usa ampliamente en el campo de los sistemas de recomendación multimedia (…

Si está interesado en cosas oscuras, hay dos razones por las que es probable que sus búsquedas de artículos y productos estén menos relacionadas con sus intereses que las de sus pares "convencionales"; o usted es un "caso límite" de monetiz…
Variantes
Una "Variante" es un incidente de IA similar a un caso conocido—tiene los mismos causantes, daños y sistema de IA. En lugar de enumerarlo por separado, lo agrupamos bajo el primer incidente informado. A diferencia de otros incidentes, las variantes no necesitan haber sido informadas fuera de la AIID. Obtenga más información del trabajo de investigación.
¿Has visto algo similar?
Incidentes Similares
Did our AI mess up? Flag the unrelated incidents
Incidentes Similares
Did our AI mess up? Flag the unrelated incidents