Description: Pak 'n' Save's AI-based app, Savey Meal-bot, inadvertently suggested dangerous recipes, including one creating chlorine gas, when users entered non-food household items, raising safety and oversight concerns.
推定: Pak 'n' Saveが開発し提供したAIシステムで、Potential users of the Savey Meal-botに影響を与えた
CSETv1 分類法のクラス
分類法の詳細Incident Number
The number of the incident in the AI Incident Database.
594
AI Tangible Harm Level Notes
Notes about the AI tangible harm level assessment
People could misuse the AI to get harmful recipes--but they would have to intentionally put inedible ingredients into the AI to get these harmful recipes. This is an example of AI misuse.
Notes (special interest intangible harm)
Input any notes that may help explain your answers.
People could misuse the AI to get harmful content (ie recipes)
Special Interest Intangible Harm
An assessment of whether a special interest intangible harm occurred. This assessment does not consider the context of the intangible harm, if an AI was involved, or if there is characterizable class or subgroup of harmed entities. It is also not assessing if an intangible harm occurred. It is only asking if a special interest intangible harm occurred.
yes
Risk Subdomain
A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
7.3. Lack of capability or robustness
Risk Domain
The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
- AI system safety, failures, and limitations
Entity
Which, if any, entity is presented as the main cause of the risk
AI
Timing
The stage in the AI lifecycle at which the risk is presented as occurring
Post-deployment
Intent
Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
Unintentional
インシデントレポート
レポートタイムライン

A New Zealand supermarket experimenting with using AI to generate meal plans has seen its app produce some unusual dishes – recommending customers recipes for deadly chlorine gas, “poison bread sandwiches” and mosquito-repellent roast potat…
バリアント
「バリアント」は既存のAIインシデントと同じ原因要素を共有し、同様な被害を引き起こし、同じ知的システムを含んだインシデントです。バリアントは完全に独立したインシデントとしてインデックスするのではなく、データベースに最初に投稿された同様なインシデントの元にインシデントのバリエーションとして一覧します。インシデントデータベースの他の投稿タイプとは違い、バリアントではインシデントデータベース以外の根拠のレポートは要求されません。詳細についてはこの研究論文を参照してください