Description: Peer reviewers of Australian government grant applications inserted applicants' work into generative AI systems such as ChatGPT to generate assessment reports, which allegedly posed confidentiality and security issues.
インシデントのステータス
Risk Subdomain
A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
5.1. Overreliance and unsafe use
Risk Domain
The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
- Human-Computer Interaction
Entity
Which, if any, entity is presented as the main cause of the risk
Human
Timing
The stage in the AI lifecycle at which the risk is presented as occurring
Post-deployment
Intent
Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
Intentional
インシデントレポート
レポートタイムライン

Academics have alleged that some peer reviews of grant applications are being written with ChatGPT, prompting the Australian Research Council (ARC) to warn academics that feeding their peers’ work into generative AI models could be a breach…

The Australian Research Council has faced allegations that some of its peer reviewers may have used ChatGPT to assess research proposals, prompting a warning from the education minister and concerns about possible academic misconduct.
Sever…
バリアント
「バリアント」は既存のAIインシデントと同じ原因要素を共有し、同様な被害を引き起こし、同じ知的システムを含んだインシデントです。バリアントは完全に独立したインシデントとしてインデックスするのではなく、データベースに最初に投稿された同様なインシデントの元にインシデントのバリエーションとして一覧します。インシデントデータベースの他の投稿タイプとは違い、バリアントではインシデントデータベース以外の根拠のレポートは要求されません。詳細についてはこの研究論文を参照してください