Description: Facebook's "People You May Know" (PYMK) feature was reported by a psychiatrist for recommending her patients as friends through recommendations, violating patients' privacy and confidentiality.
推定: Facebookが開発し提供したAIシステムで、pseudonymized psychiatrist's patients , pseudonymized psychiatrist , patients と healthcare providersに影響を与えた
インシデントのステータス
Risk Subdomain
A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
2.1. Compromise of privacy by obtaining, leaking or correctly inferring sensitive information
Risk Domain
The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
- Privacy & Security
Entity
Which, if any, entity is presented as the main cause of the risk
AI
Timing
The stage in the AI lifecycle at which the risk is presented as occurring
Post-deployment
Intent
Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
Unintentional
インシデントレポート
レポートタイムライン

Facebook's ability to figure out the "people we might know" is sometimes eerie. Many a Facebook user has been creeped out when a one-time Tinder date or an ex-boss from 10 years ago suddenly pops up as a friend recommendation. How does the …
バリアント
「バリアント」は既存のAIインシデントと同じ原因要素を共有し、同様な被害を引き起こし、同じ知的システムを含んだインシデントです。バリアントは完全に独立したインシデントとしてインデックスするのではなく、データベースに最初に投稿された同様なインシデントの元にインシデントのバリエーションとして一覧します。インシデントデータベースの他の投稿タイプとは違い、バリアントではインシデントデータベース以外の根拠のレポートは要求されません。詳細についてはこの研究論文を参照してください
よく似たインシデント
Did our AI mess up? Flag the unrelated incidents
よく似たインシデント
Did our AI mess up? Flag the unrelated incidents