Description: Unsupervised image generation models trained using Internet images such as iGPT and SimCLR were shown to have embedded racial, gender, and intersectional biases, resulting in stereotypical depictions.
Alleged: OpenAI と Google developed and deployed an AI system, which harmed gender minority groups , racial minority groups と underrepresented groups in training data.
インシデントのステータス
CSETv1 分類法のクラス
分類法の詳細Incident Number
The number of the incident in the AI Incident Database.
367
Special Interest Intangible Harm
An assessment of whether a special interest intangible harm occurred. This assessment does not consider the context of the intangible harm, if an AI was involved, or if there is characterizable class or subgroup of harmed entities. It is also not assessing if an intangible harm occurred. It is only asking if a special interest intangible harm occurred.
yes
Date of Incident Year
The year in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the year, estimate. Otherwise, leave blank.
Enter in the format of YYYY
2021
Date of Incident Month
The month in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the month, estimate. Otherwise, leave blank.
Enter in the format of MM
01
Estimated Date
“Yes” if the data was estimated. “No” otherwise.
Yes
Multiple AI Interaction
“Yes” if two or more independently operating AI systems were involved. “No” otherwise.
no
CSETv1_Annotator-1 分類法のクラス
分類法の詳細Incident Number
The number of the incident in the AI Incident Database.
367
Special Interest Intangible Harm
An assessment of whether a special interest intangible harm occurred. This assessment does not consider the context of the intangible harm, if an AI was involved, or if there is characterizable class or subgroup of harmed entities. It is also not assessing if an intangible harm occurred. It is only asking if a special interest intangible harm occurred.
yes
Date of Incident Year
The year in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the year, estimate. Otherwise, leave blank.
Enter in the format of YYYY
2021
Date of Incident Month
The month in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the month, estimate. Otherwise, leave blank.
Enter in the format of MM
01
Estimated Date
“Yes” if the data was estimated. “No” otherwise.
Yes
Multiple AI Interaction
“Yes” if two or more independently operating AI systems were involved. “No” otherwise.
no
インシデントレポート
レポートタイムライン
technologyreview.com · 2021
- 情報源として元のレポートを表示
- インターネットアーカイブでレポートを表示
Ryan Steed, a PhD student at Carnegie Mellon University, and Aylin Caliskan, an assistant professor at George Washington University, looked at two algorithms: OpenAI’s iGPT (a version of GPT-2 that is trained on pixels instead of words) and…
バリアント
「バリアント」は既存のAIインシデントと同じ原因要素を共有し、同様な被害を引き起こし、同じ知的システムを含んだインシデントです。バリアントは完全に独立したインシデントとしてインデックスするのではなく、データベースに最初に投稿された同様なインシデントの元にインシデントのバリエーションとして一覧します。インシデントデータベースの他の投稿タイプとは違い、バリアントではインシデントデータベース以外の根拠のレポートは要求されません。詳細についてはこの研究論文を参照してください