Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
発見する
投稿する
  • ようこそAIIDへ
  • インシデントを発見
  • 空間ビュー
  • テーブル表示
  • リスト表示
  • 組織
  • 分類法
  • インシデントレポートを投稿
  • 投稿ランキング
  • ブログ
  • AIニュースダイジェスト
  • リスクチェックリスト
  • おまかせ表示
  • サインアップ
閉じる
発見する
投稿する
  • ようこそAIIDへ
  • インシデントを発見
  • 空間ビュー
  • テーブル表示
  • リスト表示
  • 組織
  • 分類法
  • インシデントレポートを投稿
  • 投稿ランキング
  • ブログ
  • AIニュースダイジェスト
  • リスクチェックリスト
  • おまかせ表示
  • サインアップ
閉じる

インシデント 29: Image Classification of Battle Tanks

概要: A potentially apocryphal story in which an image classifier was produced to differentiate types of battle tanks, but the resulting model keyed in on environmental attributes rather than tank attributes

ツール

新しいレポート新しいレポート新しいレスポンス新しいレスポンス発見する発見する履歴を表示履歴を表示

組織

すべての組織を表示
推定: United States Governmentが開発し提供したAIシステムで、United States Governmentに影響を与えた

インシデントのステータス

インシデントID
29
レポート数
3
インシデント発生日
2011-09-20
エディタ
Sean McGregor
Applied Taxonomies
CSETv1, GMF, MIT

CSETv1 分類法のクラス

分類法の詳細

Incident Number

The number of the incident in the AI Incident Database.
 

29

Estimated Date

“Yes” if the data was estimated. “No” otherwise.
 

No

Lives Lost

Indicates the number of deaths reported
 

0

Injuries

Indicate the number of injuries reported.
 

0

Estimated Harm Quantities

Indicates if the amount was estimated.
 

No

There is a potentially identifiable specific entity that experienced the harm

A potentially identifiable specific entity that experienced the harm can be characterized or identified.
 

No

MIT 分類法のクラス

Machine-Classified
分類法の詳細

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

7.3. Lack of capability or robustness

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. AI system safety, failures, and limitations

Entity

Which, if any, entity is presented as the main cause of the risk
 

AI

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Pre-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Unintentional

インシデントレポート

レポートタイムライン

+1
The Neural Net Tank Urban Legend
Tales from the Trenches: AI Disaster Stories (GDC talk)AI Incident Database Incidents Converted to Issues
The Neural Net Tank Urban Legend

The Neural Net Tank Urban Legend

gwern.net

Tales from the Trenches: AI Disaster Stories (GDC talk)

Tales from the Trenches: AI Disaster Stories (GDC talk)

lobste.rs

AI Incident Database Incidents Converted to Issues

AI Incident Database Incidents Converted to Issues

github.com

The Neural Net Tank Urban Legend
gwern.net · 2011

Drawing on Google/Google Books/Google Scholar/Libgen/LessWrong/Hacker News/Twitter, I have compiled a large number of variants of the story from various sources; below, in reverse chronological order by decade.

A similar thing happened here…

Tales from the Trenches: AI Disaster Stories (GDC talk)
lobste.rs · 2016

His team was working on running simulations of long-distance manned spaceflight. In particular, the goal of their simulations was to determine an algorithm that would optimally allocate food, water, and electricity to 3 crew members. The de…

AI Incident Database Incidents Converted to Issues
github.com · 2022

The following former incidents have been converted to "issues" following an update to the incident definition and ingestion criteria.

21: Tougher Turing Test Exposes Chatbots’ Stupidity

Description: The 2016 Winograd Schema Challenge highli…

バリアント

「バリアント」は既存のAIインシデントと同じ原因要素を共有し、同様な被害を引き起こし、同じ知的システムを含んだインシデントです。バリアントは完全に独立したインシデントとしてインデックスするのではなく、データベースに最初に投稿された同様なインシデントの元にインシデントのバリエーションとして一覧します。インシデントデータベースの他の投稿タイプとは違い、バリアントではインシデントデータベース以外の根拠のレポートは要求されません。詳細についてはこの研究論文を参照してください

よく似たインシデント

テキスト類似度による

Did our AI mess up? Flag the unrelated incidents

Northpointe Risk Models

Machine Bias - ProPublica

May 2016 · 15 レポート
AI Beauty Judge Did Not Like Dark Skin

A beauty contest was judged by AI and the robots didn't like dark skin

Sep 2016 · 10 レポート
All Image Captions Produced are Violent

Are you scared yet? Meet Norman, the psychopathic AI

Apr 2018 · 28 レポート
前のインシデント次のインシデント

よく似たインシデント

テキスト類似度による

Did our AI mess up? Flag the unrelated incidents

Northpointe Risk Models

Machine Bias - ProPublica

May 2016 · 15 レポート
AI Beauty Judge Did Not Like Dark Skin

A beauty contest was judged by AI and the robots didn't like dark skin

Sep 2016 · 10 レポート
All Image Captions Produced are Violent

Are you scared yet? Meet Norman, the psychopathic AI

Apr 2018 · 28 レポート

リサーチ

  • “AIインシデント”の定義
  • “AIインシデントレスポンス”の定義
  • データベースのロードマップ
  • 関連研究
  • 全データベースのダウンロード

プロジェクトとコミュニティ

  • AIIDについて
  • コンタクトとフォロー
  • アプリと要約
  • エディタのためのガイド

インシデント

  • 全インシデントの一覧
  • フラグの立ったインシデント
  • 登録待ち一覧
  • クラスごとの表示
  • 分類法

2024 - AI Incident Database

  • 利用規約
  • プライバシーポリシー
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • 1420c8e