Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
発見する
投稿する
  • ようこそAIIDへ
  • インシデントを発見
  • 空間ビュー
  • テーブル表示
  • リスト表示
  • 組織
  • 分類法
  • インシデントレポートを投稿
  • 投稿ランキング
  • ブログ
  • AIニュースダイジェスト
  • リスクチェックリスト
  • おまかせ表示
  • サインアップ
閉じる
発見する
投稿する
  • ようこそAIIDへ
  • インシデントを発見
  • 空間ビュー
  • テーブル表示
  • リスト表示
  • 組織
  • 分類法
  • インシデントレポートを投稿
  • 投稿ランキング
  • ブログ
  • AIニュースダイジェスト
  • リスクチェックリスト
  • おまかせ表示
  • サインアップ
閉じる

インシデント 170: Target Suggested Maternity-Related Advertisements to a Teenage Girl's Home, Allegedly Correctly Predicting Her Pregnancy via Algorithm

概要: Target recommended maternity-related items to a family in Atlanta via ads, allegedly predicting their teenage daughter’s pregnancy before her father did, although critics have called into question the predictability of the algorithm and the authenticity of its claims.

ツール

新しいレポート新しいレポート新しいレスポンス新しいレスポンス発見する発見する履歴を表示履歴を表示

組織

すべての組織を表示
推定: Targetが開発し提供したAIシステムで、Target customersに影響を与えた

インシデントのステータス

インシデントID
170
レポート数
3
インシデント発生日
2003-06-01
エディタ
Sean McGregor, Khoa Lam
Applied Taxonomies
GMF, MIT

MIT 分類法のクラス

Machine-Classified
分類法の詳細

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

2.1. Compromise of privacy by obtaining, leaking or correctly inferring sensitive information

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. Privacy & Security

Entity

Which, if any, entity is presented as the main cause of the risk
 

AI

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Intentional

インシデントレポート

レポートタイムライン

Incident Occurrence+1
How Target Figured Out A Teen Girl Was Pregnant Before Her Father Did
Target didn’t figure out a teen girl was pregnant before her father did
How Target Figured Out A Teen Girl Was Pregnant Before Her Father Did

How Target Figured Out A Teen Girl Was Pregnant Before Her Father Did

forbes.com

How Companies Learn Your Secrets

How Companies Learn Your Secrets

nytimes.com

Target didn’t figure out a teen girl was pregnant before her father did

Target didn’t figure out a teen girl was pregnant before her father did

medium.com

How Target Figured Out A Teen Girl Was Pregnant Before Her Father Did
forbes.com · 2012

Every time you go shopping, you share intimate details about your consumption patterns with retailers. And many of those retailers are studying those details to figure out what you like, what you need, and which coupons are most likely to m…

How Companies Learn Your Secrets
nytimes.com · 2012

Andrew Pole had just started working as a statistician for Target in 2002, when two colleagues from the marketing department stopped by his desk to ask an odd question: “If we wanted to figure out if a customer is pregnant, even if she didn…

Target didn’t figure out a teen girl was pregnant before her father did
medium.com · 2020

Target didn’t figure out a teenager was pregnant before her father did, and that one article that said they did was silly and bad.

In 2012, a story was published in the New York Times under the headline How Companies Learn Your Secrets. The…

バリアント

「バリアント」は既存のAIインシデントと同じ原因要素を共有し、同様な被害を引き起こし、同じ知的システムを含んだインシデントです。バリアントは完全に独立したインシデントとしてインデックスするのではなく、データベースに最初に投稿された同様なインシデントの元にインシデントのバリエーションとして一覧します。インシデントデータベースの他の投稿タイプとは違い、バリアントではインシデントデータベース以外の根拠のレポートは要求されません。詳細についてはこの研究論文を参照してください

よく似たインシデント

テキスト類似度による

Did our AI mess up? Flag the unrelated incidents

Northpointe Risk Models

Machine Bias - ProPublica

May 2016 · 15 レポート
Predictive Policing Biases of PredPol

Policing the Future

Nov 2015 · 17 レポート
Kronos Scheduling Algorithm Allegedly Caused Financial Issues for Starbucks Employees

Working Anything but 9 to 5

Aug 2014 · 10 レポート
前のインシデント次のインシデント

よく似たインシデント

テキスト類似度による

Did our AI mess up? Flag the unrelated incidents

Northpointe Risk Models

Machine Bias - ProPublica

May 2016 · 15 レポート
Predictive Policing Biases of PredPol

Policing the Future

Nov 2015 · 17 レポート
Kronos Scheduling Algorithm Allegedly Caused Financial Issues for Starbucks Employees

Working Anything but 9 to 5

Aug 2014 · 10 レポート

リサーチ

  • “AIインシデント”の定義
  • “AIインシデントレスポンス”の定義
  • データベースのロードマップ
  • 関連研究
  • 全データベースのダウンロード

プロジェクトとコミュニティ

  • AIIDについて
  • コンタクトとフォロー
  • アプリと要約
  • エディタのためのガイド

インシデント

  • 全インシデントの一覧
  • フラグの立ったインシデント
  • 登録待ち一覧
  • クラスごとの表示
  • 分類法

2024 - AI Incident Database

  • 利用規約
  • プライバシーポリシー
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • ecd56df