Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
発見する
投稿する
  • ようこそAIIDへ
  • インシデントを発見
  • 空間ビュー
  • テーブル表示
  • リスト表示
  • 組織
  • 分類法
  • インシデントレポートを投稿
  • 投稿ランキング
  • ブログ
  • AIニュースダイジェスト
  • リスクチェックリスト
  • おまかせ表示
  • サインアップ
閉じる
発見する
投稿する
  • ようこそAIIDへ
  • インシデントを発見
  • 空間ビュー
  • テーブル表示
  • リスト表示
  • 組織
  • 分類法
  • インシデントレポートを投稿
  • 投稿ランキング
  • ブログ
  • AIニュースダイジェスト
  • リスクチェックリスト
  • おまかせ表示
  • サインアップ
閉じる

インシデント 149: Zillow Shut Down Zillow Offers Division Allegedly Due to Predictive Pricing Tool's Insufficient Accuracy

概要: Zillow's AI-powered predictive pricing tool Zestimate was allegedly not able to accurately forecast housing prices three to six months in advance due to rapid market changes, prompting division shutdown and layoff of a few thousand employees.

ツール

新しいレポート新しいレポート新しいレスポンス新しいレスポンス発見する発見する履歴を表示履歴を表示

組織

すべての組織を表示
Alleged: Zillow Offers developed an AI system deployed by Zillow, which harmed Zillow と Zillow Offers staff.

インシデントのステータス

インシデントID
149
レポート数
4
インシデント発生日
2021-11-02
エディタ
Sean McGregor, Khoa Lam
Applied Taxonomies
GMF, CSETv1, MIT

CSETv1 分類法のクラス

分類法の詳細

Incident Number

The number of the incident in the AI Incident Database.
 

149

Special Interest Intangible Harm

An assessment of whether a special interest intangible harm occurred. This assessment does not consider the context of the intangible harm, if an AI was involved, or if there is characterizable class or subgroup of harmed entities. It is also not assessing if an intangible harm occurred. It is only asking if a special interest intangible harm occurred.
 

no

Date of Incident Year

The year in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the year, estimate. Otherwise, leave blank. Enter in the format of YYYY
 

2021

Date of Incident Month

The month in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the month, estimate. Otherwise, leave blank. Enter in the format of MM
 

11

Estimated Date

“Yes” if the data was estimated. “No” otherwise.
 

Yes

Multiple AI Interaction

“Yes” if two or more independently operating AI systems were involved. “No” otherwise.
 

no

GMF 分類法のクラス

分類法の詳細

Known AI Technology Snippets

One or more snippets that justify the classification.
 

(Snippet Text: "We've determined the unpredictability in forecasting home prices far exceeds what we anticipated and continuing to scale Zillow Offers would result in too much earnings and balance-sheet volatility," said Rich Barton, Zillow's co-founder and CEO., Related Classifications: Regression), (Snippet Text: For Zillow, one of the first steps in its decision to purchase any home is the "Zestimate" — a machine-learning-assisted estimate of a home's market value that is calculated by taking into account oodles of data about the property gathered from sources including tax and property records, homeowner-submitted details such as the addition of a bathroom or bedroom, and pictures of the house., Related Classifications: Multimodal Learning, Diverse Data)

MIT 分類法のクラス

Machine-Classified
分類法の詳細

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

7.3. Lack of capability or robustness

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. AI system safety, failures, and limitations

Entity

Which, if any, entity is presented as the main cause of the risk
 

AI

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Unintentional

インシデントレポート

レポートタイムライン

+1
Zillow to exit its home buying business, cut 25% of staff
Zillow's home-buying debacle shows how hard it is to use AI to value real estateWhy Zillow Couldn’t Make Algorithmic House Pricing WorkWhat happened at Zillow? How a prized real estate site lost at iBuying
Zillow to exit its home buying business, cut 25% of staff

Zillow to exit its home buying business, cut 25% of staff

cnn.com

Zillow's home-buying debacle shows how hard it is to use AI to value real estate

Zillow's home-buying debacle shows how hard it is to use AI to value real estate

cnn.com

Why Zillow Couldn’t Make Algorithmic House Pricing Work

Why Zillow Couldn’t Make Algorithmic House Pricing Work

wired.co.uk

What happened at Zillow? How a prized real estate site lost at iBuying

What happened at Zillow? How a prized real estate site lost at iBuying

cnet.com

Zillow to exit its home buying business, cut 25% of staff
cnn.com · 2021

Zillow is getting out of the iBuying business and will shut down its Zillow Offers division, resulting in a 25% reduction in its staff.

In its quarterly earnings report on Tuesday, the company said it will see a total write-down of more tha…

Zillow's home-buying debacle shows how hard it is to use AI to value real estate
cnn.com · 2021

In February, Zillow appeared so confident in its ability to use artificial intelligence to estimate the value of homes that it announced a new option: for certain homes, its so-called "Zestimate" would also represent an initial cash offer f…

Why Zillow Couldn’t Make Algorithmic House Pricing Work
wired.co.uk · 2021

Zillow's Zestimate of home values has become a go-to reference for US homeowners. But when Zillow tried to use its algorithm to buy and sell homes, it badly misread the market.

The company’s iBuyer (or “instant buyer”) arm, where tech-first…

What happened at Zillow? How a prized real estate site lost at iBuying
cnet.com · 2021

Zillow, the popular online real estate marketplace and daydream fuel throughout the pandemic, is having a tough time. 

The company turned heads earlier this month when it announced it would be shutting down Zillow Offers, the algorithm-fuel…

バリアント

「バリアント」は既存のAIインシデントと同じ原因要素を共有し、同様な被害を引き起こし、同じ知的システムを含んだインシデントです。バリアントは完全に独立したインシデントとしてインデックスするのではなく、データベースに最初に投稿された同様なインシデントの元にインシデントのバリエーションとして一覧します。インシデントデータベースの他の投稿タイプとは違い、バリアントではインシデントデータベース以外の根拠のレポートは要求されません。詳細についてはこの研究論文を参照してください

よく似たインシデント

テキスト類似度による

Did our AI mess up? Flag the unrelated incidents

Kronos Scheduling Algorithm Allegedly Caused Financial Issues for Starbucks Employees

Working Anything but 9 to 5

Aug 2014 · 10 レポート
Poor Performance of Tesla Factory Robots

Tesla’s Factory Woes Reveals Why You Shouldn’t Automate Everything

Oct 2016 · 28 レポート
SoftBank's Humanoid Robot, Pepper, Reportedly Frequently Made Errors, Prompting Dismissal

Humanoid Robot Keeps Getting Fired From His Jobs

Jul 2021 · 2 レポート
前のインシデント次のインシデント

よく似たインシデント

テキスト類似度による

Did our AI mess up? Flag the unrelated incidents

Kronos Scheduling Algorithm Allegedly Caused Financial Issues for Starbucks Employees

Working Anything but 9 to 5

Aug 2014 · 10 レポート
Poor Performance of Tesla Factory Robots

Tesla’s Factory Woes Reveals Why You Shouldn’t Automate Everything

Oct 2016 · 28 レポート
SoftBank's Humanoid Robot, Pepper, Reportedly Frequently Made Errors, Prompting Dismissal

Humanoid Robot Keeps Getting Fired From His Jobs

Jul 2021 · 2 レポート

リサーチ

  • “AIインシデント”の定義
  • “AIインシデントレスポンス”の定義
  • データベースのロードマップ
  • 関連研究
  • 全データベースのダウンロード

プロジェクトとコミュニティ

  • AIIDについて
  • コンタクトとフォロー
  • アプリと要約
  • エディタのためのガイド

インシデント

  • 全インシデントの一覧
  • フラグの立ったインシデント
  • 登録待ち一覧
  • クラスごとの表示
  • 分類法

2024 - AI Incident Database

  • 利用規約
  • プライバシーポリシー
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • 1420c8e