Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar

Incidente 706: Scammers Using AI to Impersonate Small Businesses

Descripción: Scammers are using AI to impersonate small businesses by copying their videos, logos, and social media posts. They create fake listings and ads, diverting customers to cheap knockoffs or stealing their money. This has severely impacted businesses like Bee Cups, Darn Tough Vermont, and Cascade hummingbird feeders, leading to significant financial losses, negative reviews, and damaged reputations. Their deployment of AI makes it challenging for small businesses to combat these fraudulent activities.

Herramientas

Nuevo InformeNuevo InformeNueva RespuestaNueva RespuestaDescubrirDescubrirVer HistorialVer Historial

Entidades

Ver todas las entidades
Alleged: OpenAI y Unknown AI developers developed an AI system deployed by Unknown scammers, which harmed small businesses , Small business customers , Small business employees , Bee Cups , Darn Tough Vermont y Jim Carter.

Estadísticas de incidentes

ID
706
Cantidad de informes
1
Fecha del Incidente
2024-04-01
Editores
Daniel Atherton
Applied Taxonomies
MIT

Clasificaciones de la Taxonomía MIT

Machine-Classified
Detalles de la Taxonomía

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

4.3. Fraud, scams, and targeted manipulation

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. Malicious Actors & Misuse

Entity

Which, if any, entity is presented as the main cause of the risk
 

Human

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Intentional

Informes del Incidente

Cronología de Informes

Incident OccurrenceScammers’ New Way of Targeting Small Businesses: Impersonating Them
Scammers’ New Way of Targeting Small Businesses: Impersonating Them

Scammers’ New Way of Targeting Small Businesses: Impersonating Them

wsj.com

Scammers’ New Way of Targeting Small Businesses: Impersonating Them
wsj.com · 2024

Copycats are stepping up their attacks on small businesses. 

Sellers of products including merino socks and hummingbird feeders say they have lost customers to online scammers who use the legitimate business owners' videos, logos and social…

Variantes

Una "Variante" es un incidente que comparte los mismos factores causales, produce daños similares e involucra los mismos sistemas inteligentes que un incidente de IA conocido. En lugar de indexar las variantes como incidentes completamente separados, enumeramos las variaciones de los incidentes bajo el primer incidente similar enviado a la base de datos. A diferencia de otros tipos de envío a la base de datos de incidentes, no se requiere que las variantes tengan informes como evidencia externa a la base de datos de incidentes. Obtenga más información del trabajo de investigación.

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Wikipedia Vandalism Prevention Bot Loop

Danger, danger! 10 alarming examples of AI gone wild

Feb 2017 · 6 informes
Amazon Censors Gay Books

Amazon Censors Gay Books

May 2008 · 24 informes
Tiny Changes Let False Claims About COVID-19, Voting Evade Facebook Fact Checks

Tiny Changes Let False Claims About COVID-19, Voting Evade Facebook Fact Checks

Oct 2020 · 1 informe
Incidente AnteriorSiguiente Incidente

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Wikipedia Vandalism Prevention Bot Loop

Danger, danger! 10 alarming examples of AI gone wild

Feb 2017 · 6 informes
Amazon Censors Gay Books

Amazon Censors Gay Books

May 2008 · 24 informes
Tiny Changes Let False Claims About COVID-19, Voting Evade Facebook Fact Checks

Tiny Changes Let False Claims About COVID-19, Voting Evade Facebook Fact Checks

Oct 2020 · 1 informe

Investigación

  • Definición de un “Incidente de IA”
  • Definición de una “Respuesta a incidentes de IA”
  • Hoja de ruta de la base de datos
  • Trabajo relacionado
  • Descargar Base de Datos Completa

Proyecto y Comunidad

  • Acerca de
  • Contactar y Seguir
  • Aplicaciones y resúmenes
  • Guía del editor

Incidencias

  • Todos los incidentes en forma de lista
  • Incidentes marcados
  • Cola de envío
  • Vista de clasificaciones
  • Taxonomías

2024 - AI Incident Database

  • Condiciones de uso
  • Política de privacidad
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • ecd56df