CSETv0
¿Qué es la Taxonomía GMF?
La taxonomía de Objetivos, Métodos y Fallos (GMF, por sus siglas en inglés) es una taxonomía de análisis de causa de fallos que interrelaciona los objetivos de la implementación del sistema, los métodos del sistema y sus posibles fallos. Detalles sobre el proceso están disponibles en el trabajo reciente publicado para el paper SafeAI.
¿Cómo exploro la taxonomía?
Todas las taxonomías se pueden utilizar para filtrar informes de incidentes dentro de la Aplicación Discover. Los filtros de taxonomía funcionan de manera similar a cómo filtras productos en un sitio web de comercio electrónico. Usa el campo de búsqueda en la parte inferior de la pestaña “Clasificaciones” para encontrar el campo de taxonomía que te gustaría filtrar, luego haz clic en el valor deseado para aplicar el filtro.
Acerca de la Colaboración de IA Responsable
La Base de Datos de Incidentes de IA es un proyecto colaborativo de muchas personas y organizaciones. Los detalles sobre las personas y organizaciones que contribuyen a esta taxonomía en particular aparecerán aquí, mientras que puedes aprender más sobre el Colab en sí en las páginas de inicio de la base de datos de incidentes home y about.
Los encargados de mantener esta taxonomía incluyen,
Campos de Taxonomía
Overall severity of harm Buscable en la Aplicación Discover
- Negligible46 Incidentes
- Minor19 Incidentes
- Unclear/unknown16 Incidentes
- Moderate12 Incidentes
- Severe6 Incidentes
Definición: An estimate of the overall severity of harm caused. "Negligible" harm means minor inconvenience or expense, easily remedied. “Minor” harm means limited damage to property, social stability, the political system, or civil liberties occurred or nearly occurred. "Moderate" harm means that humans were injured (but not killed) or nearly injured, or that financial, property, social, or political interests or civil liberties were materially affected (or nearly so affected). "Severe" harm means that a small number of humans were or were almost gravely injured or killed, or that financial, property, social, or political interests or civil liberties were significantly disrupted at at least a regional or national scale (or nearly so disrupted). "Critical" harm means that many humans were or were almost killed, or that financial, property, social, or political interests were seriously disrupted at a national or global scale (or nearly so disrupted).
Uneven distribution of harms basis Buscable en la Aplicación Discover
- Race23 Incidentes
- Sex13 Incidentes
- Religion7 Incidentes
- National origin or immigrant status6 Incidentes
- Age5 Incidentes
Definición: If harms were unevenly distributed, this field indicates the basis or bases on which they were unevenly distributed.
Harm type Buscable en la Aplicación Discover
- Harm to social or political systems19 Incidentes
- Psychological harm18 Incidentes
- Harm to physical health/safety17 Incidentes
- Harm to civil liberties16 Incidentes
- Financial harm12 Incidentes
Definición: Indicates the type(s) of harm caused or nearly caused by the incident.
System developer Buscable en la Aplicación Discover
Definición: The entity that created the AI system.
Sector of deployment Buscable en la Aplicación Discover
- Información y comunicación26 Incidentes
- Transporte y almacenamiento13 Incidentes
- Artes, entretenimiento y recreación13 Incidentes
- Administración pública y defensa12 Incidentes
- Actividades administrativas y de servicios de apoyo7 Incidentes
Definición: The primary economic sector in which the AI system(s) involved in the incident were operating.
Relevant AI functions Buscable en la Aplicación Discover
Definición: Indicates whether the AI system(s) were intended to perform any of the following high-level functions: "Perception," i.e. sensing and understanding the environment; "Cognition," i.e. making decisions; or "Action," i.e. carrying out decisions through physical or digital means.
AI tools and techniques used Buscable en la Aplicación Discover
- machine learning19 Incidentes
- Facial recognition6 Incidentes
- open-source6 Incidentes
- natural language processing5 Incidentes
- environmental sensing5 Incidentes
Definición: Open-ended tags that indicate the hardware and software involved in the AI system(s).
AI functions and applications used Buscable en la Aplicación Discover
- decision support10 Incidentes
- autonomous driving9 Incidentes
- recommendation engine9 Incidentes
- Facial recognition8 Incidentes
- image recognition8 Incidentes
Definición: Open-ended tags that describe the functions and applications of the AI system.
Location Buscable en la Aplicación Discover
- Global27 Incidentes
- United States6 Incidentes
- New Zealand2 Incidentes
- Palo Alto, CA2 Incidentes
- United Kingdom2 Incidentes
Loading...
Definición: The location or locations where the incident played out.
Named entities Buscable en la Aplicación Discover
Definición: All named entities (such as people, organizations, locations, and products - generally proper nouns) that seem to have a significant relationship with this event, as indicated by the available evidence.
Party responsible for AI system Buscable en la Aplicación Discover
Definición: A list of parties (up to three) that were responsible for the relevant AI tool or system, i.e. that had operational control over the AI-related system causing harm (or control over those who did).
Harm nearly missed? Buscable en la Aplicación Discover
Definición: Was harm caused, or was it a near miss?
Probable level of intent Buscable en la Aplicación Discover
Definición: Indicates whether the incident was deliberate/expected or accidental, based on the available evidence. "Deliberate or expected" applies if it is established or highly likely that the system acted more or less as expected, from the perspective of at least one of the people or entities responsible for it. “Accident” applies if it is established or highly likely that the harm arose from the system acting in an unexpected way. "Unclear" applies if the evidence is contradictory or too thin to apply either of the above labels.
Human lives lost Buscable en la Aplicación Discover
Definición: Marked "trur" if one or more people died as a result of the accident, "false" if there is no evidence of lives being lost, "unclear" otherwise.
Critical infrastructure sectors affected Buscable en la Aplicación Discover
- Transportation10 Incidentes
- Healthcare and public health4 Incidentes
- Communications2 Incidentes
- Government facilities2 Incidentes
- Information technology1 Incidente
Definición: Where applicable, this field indicates if the incident caused harm to any of the economic sectors designated by the U.S. government as critical infrastructure.
Public sector deployment Buscable en la Aplicación Discover
Definición: "Yes" if the AI system(s) involved in the accident were being used by the public sector or for the administration of public goods (for example, public transportation). "No" if the system(s) were being used in the private sector or for commercial purposes (for example, a ride-sharing company), on the other.
Nature of end user Buscable en la Aplicación Discover
Definición: "Expert" if users with special training or technical expertise were the ones meant to benefit from the AI system(s)’ operation; "Amateur" if the AI systems were primarily meant to benefit the general public or untrained users.
Level of autonomy Buscable en la Aplicación Discover
Definición: The degree to which the AI system(s) functions independently from human intervention. "High" means there is no human involved in the system action execution; "Medium" means the system generates a decision and a human oversees the resulting action; "low" means the system generates decision-support output and a human makes a decision and executes an action.
Physical system Buscable en la Aplicación Discover
- Software only66 Incidentes
- Vehicle/mobile robot16 Incidentes
- Consumer device7 Incidentes
- Unknown/unclear2 Incidentes
- Other:Medical system1 Incidente
Definición: Where relevant, indicates whether the AI system(s) was embedded into or tightly associated with specific types of hardware.
Causative factors within AI system Buscable en la Aplicación Discover
Definición: Indicates which, if any, of the following types of AI failure describe the incident: "Specification," i.e. the system's behavior did not align with the true intentions of its designer, operator, etc; "Robustness," i.e. the system operated unsafely because of features or changes in its environment, or in the inputs the system received; "Assurance," i.e. the system could not be adequately monitored or controlled during operation.
Full description of the incident
Definición: A plain-language description of the incident in one paragraph or less.
Short description of the incident
Definición: A one-sentence description of the incident.
Description of AI system involved
Definición: A brief description of the AI system(s) involved in the incident, including the system’s intended function, the context in which it was deployed, and any available details about the algorithms, hardware, and training data involved in the system.
Beginning date
Definición: The date the incident began.
Ending date
Definición: The date the incident ended.
Total financial cost
Definición: The stated or estimated financial cost of the incident, if reported.
Laws covering the incident
Definición: Relevant laws under which entities involved in the incident may face legal liability as a result of the incident.
Description of the data inputs to the AI systems
Definición: A brief description of the data that the AI system(s) used or were trained on.